Matches in SemOpenAlex for { <https://semopenalex.org/work/W3193884581> ?p ?o ?g. }
- W3193884581 endingPage "7614" @default.
- W3193884581 startingPage "7614" @default.
- W3193884581 abstract "A new methodology, the hybrid learning system (HLS), based upon semi-supervised learning is proposed. HLS categorizes hyperspectral images into segmented regions with discriminative features using reduced training size. The technique utilizes the modified breaking ties (MBT) algorithm for active learning and unsupervised learning-based regressors, viz. multinomial logistic regression, for hyperspectral image categorization. The probabilities estimated by multinomial logistic regression for each sample helps towards improved segregation. The high dimensionality leads to a curse of dimensionality, which ultimately deteriorates the performance of remote sensing data classification, and the problem aggravates further if labeled training samples are limited. Many studies have tried to address the problem and have employed different methodologies for remote sensing data classification, such as kernelized methods, because of insensitiveness towards the utilization of large dataset information and active learning (AL) approaches (breaking ties as a representative) to choose only prominent samples for training data. The HLS methodology proposed in the current study is a combination of supervised and unsupervised training with generalized composite kernels generating posterior class probabilities for classification. In order to retrieve the best segmentation labels, we employed Markov random fields, which make use of prior labels from the output of the multinomial logistic regression. The comparison of HLS was carried out with known methodologies, using benchmark hyperspectral imaging (HI) datasets, namely “Indian Pines” and “Pavia University”. Findings of this study show that the HLS yields the overall accuracy of {99.93% and 99.98%}Indian Pines and {99.14% and 99.42%}Pavia University for classification and segmentation, respectively." @default.
- W3193884581 created "2021-08-30" @default.
- W3193884581 creator A5009375949 @default.
- W3193884581 creator A5014155780 @default.
- W3193884581 creator A5031472760 @default.
- W3193884581 creator A5033815044 @default.
- W3193884581 creator A5046480954 @default.
- W3193884581 creator A5051643343 @default.
- W3193884581 creator A5068498143 @default.
- W3193884581 creator A5071305203 @default.
- W3193884581 creator A5074250515 @default.
- W3193884581 creator A5074939034 @default.
- W3193884581 creator A5081215670 @default.
- W3193884581 date "2021-08-19" @default.
- W3193884581 modified "2023-09-26" @default.
- W3193884581 title "A Novel Hybrid Learning System Using Modified Breaking Ties Algorithm and Multinomial Logistic Regression for Classification and Segmentation of Hyperspectral Images" @default.
- W3193884581 cites W1522547150 @default.
- W3193884581 cites W1655403841 @default.
- W3193884581 cites W1977461281 @default.
- W3193884581 cites W1977583818 @default.
- W3193884581 cites W1988386267 @default.
- W3193884581 cites W1998030734 @default.
- W3193884581 cites W2001298023 @default.
- W3193884581 cites W2010797000 @default.
- W3193884581 cites W2016860790 @default.
- W3193884581 cites W2022470997 @default.
- W3193884581 cites W2028469338 @default.
- W3193884581 cites W2043665634 @default.
- W3193884581 cites W2044184146 @default.
- W3193884581 cites W2045095960 @default.
- W3193884581 cites W2050497921 @default.
- W3193884581 cites W2052160904 @default.
- W3193884581 cites W2063907334 @default.
- W3193884581 cites W2078296814 @default.
- W3193884581 cites W2100975942 @default.
- W3193884581 cites W2101365302 @default.
- W3193884581 cites W2104269704 @default.
- W3193884581 cites W2113464037 @default.
- W3193884581 cites W2114819256 @default.
- W3193884581 cites W2115305054 @default.
- W3193884581 cites W2115451191 @default.
- W3193884581 cites W2117633874 @default.
- W3193884581 cites W2121338139 @default.
- W3193884581 cites W2127199143 @default.
- W3193884581 cites W2131697388 @default.
- W3193884581 cites W2136625467 @default.
- W3193884581 cites W2142012908 @default.
- W3193884581 cites W2150579376 @default.
- W3193884581 cites W2160662337 @default.
- W3193884581 cites W2344373810 @default.
- W3193884581 cites W2411643563 @default.
- W3193884581 cites W2518815253 @default.
- W3193884581 cites W2600061660 @default.
- W3193884581 cites W2607378407 @default.
- W3193884581 cites W2740588177 @default.
- W3193884581 cites W2762629333 @default.
- W3193884581 cites W2772452219 @default.
- W3193884581 cites W2901434766 @default.
- W3193884581 cites W2963504849 @default.
- W3193884581 cites W3007800559 @default.
- W3193884581 cites W3113649568 @default.
- W3193884581 cites W3122817280 @default.
- W3193884581 cites W3127230150 @default.
- W3193884581 cites W3128346309 @default.
- W3193884581 cites W3140801455 @default.
- W3193884581 cites W3163885560 @default.
- W3193884581 cites W4294214983 @default.
- W3193884581 doi "https://doi.org/10.3390/app11167614" @default.
- W3193884581 hasPublicationYear "2021" @default.
- W3193884581 type Work @default.
- W3193884581 sameAs 3193884581 @default.
- W3193884581 citedByCount "4" @default.
- W3193884581 countsByYear W31938845812022 @default.
- W3193884581 countsByYear W31938845812023 @default.
- W3193884581 crossrefType "journal-article" @default.
- W3193884581 hasAuthorship W3193884581A5009375949 @default.
- W3193884581 hasAuthorship W3193884581A5014155780 @default.
- W3193884581 hasAuthorship W3193884581A5031472760 @default.
- W3193884581 hasAuthorship W3193884581A5033815044 @default.
- W3193884581 hasAuthorship W3193884581A5046480954 @default.
- W3193884581 hasAuthorship W3193884581A5051643343 @default.
- W3193884581 hasAuthorship W3193884581A5068498143 @default.
- W3193884581 hasAuthorship W3193884581A5071305203 @default.
- W3193884581 hasAuthorship W3193884581A5074250515 @default.
- W3193884581 hasAuthorship W3193884581A5074939034 @default.
- W3193884581 hasAuthorship W3193884581A5081215670 @default.
- W3193884581 hasBestOaLocation W31938845811 @default.
- W3193884581 hasConcept C105795698 @default.
- W3193884581 hasConcept C111030470 @default.
- W3193884581 hasConcept C117568660 @default.
- W3193884581 hasConcept C119857082 @default.
- W3193884581 hasConcept C151956035 @default.
- W3193884581 hasConcept C153180895 @default.
- W3193884581 hasConcept C154945302 @default.
- W3193884581 hasConcept C159078339 @default.
- W3193884581 hasConcept C192065140 @default.
- W3193884581 hasConcept C33923547 @default.
- W3193884581 hasConcept C41008148 @default.