Matches in SemOpenAlex for { <https://semopenalex.org/work/W3193886260> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W3193886260 endingPage "7535" @default.
- W3193886260 startingPage "7535" @default.
- W3193886260 abstract "Today, with the increasing number of criminal activities, automatic control systems are becoming the primary need for security forces. In this study, a new model is proposed to detect seven different weapon types using the deep learning method. This model offers a new approach to weapon classification based on the VGGNet architecture. The model is taught how to recognize assault rifles, bazookas, grenades, hunting rifles, knives, pistols, and revolvers. The proposed model is developed using the Keras library on the TensorFlow base. A new model is used to determine the method required to train, create layers, implement the training process, save training in the computer environment, determine the success rate of the training, and test the trained model. In order to train the model network proposed in this study, a new dataset consisting of seven different weapon types is constructed. Using this dataset, the proposed model is compared with the VGG-16, ResNet-50, and ResNet-101 models to determine which provides the best classification results. As a result of the comparison, the proposed model’s success accuracy of 98.40% is shown to be higher than the VGG-16 model with 89.75% success accuracy, the ResNet-50 model with 93.70% success accuracy, and the ResNet-101 model with 83.33% success accuracy." @default.
- W3193886260 created "2021-08-30" @default.
- W3193886260 creator A5002321622 @default.
- W3193886260 creator A5017760611 @default.
- W3193886260 creator A5087427802 @default.
- W3193886260 date "2021-08-17" @default.
- W3193886260 modified "2023-10-01" @default.
- W3193886260 title "Detection and Classification of Different Weapon Types Using Deep Learning" @default.
- W3193886260 cites W1526734559 @default.
- W3193886260 cites W1642182753 @default.
- W3193886260 cites W2102605133 @default.
- W3193886260 cites W2174922933 @default.
- W3193886260 cites W2194775991 @default.
- W3193886260 cites W2202532860 @default.
- W3193886260 cites W2213892522 @default.
- W3193886260 cites W2590001609 @default.
- W3193886260 cites W2778203997 @default.
- W3193886260 cites W2885450649 @default.
- W3193886260 cites W2887126342 @default.
- W3193886260 cites W2900484583 @default.
- W3193886260 cites W2902261126 @default.
- W3193886260 cites W2908939556 @default.
- W3193886260 cites W2919115771 @default.
- W3193886260 cites W2949194676 @default.
- W3193886260 cites W2963610230 @default.
- W3193886260 cites W2967911883 @default.
- W3193886260 cites W2971943712 @default.
- W3193886260 cites W3001083904 @default.
- W3193886260 cites W3006217902 @default.
- W3193886260 cites W3008162640 @default.
- W3193886260 cites W3010779341 @default.
- W3193886260 cites W3016958897 @default.
- W3193886260 cites W3017079914 @default.
- W3193886260 cites W3034017731 @default.
- W3193886260 cites W4205947740 @default.
- W3193886260 cites W4231109964 @default.
- W3193886260 cites W4367000283 @default.
- W3193886260 doi "https://doi.org/10.3390/app11167535" @default.
- W3193886260 hasPublicationYear "2021" @default.
- W3193886260 type Work @default.
- W3193886260 sameAs 3193886260 @default.
- W3193886260 citedByCount "14" @default.
- W3193886260 countsByYear W31938862602022 @default.
- W3193886260 countsByYear W31938862602023 @default.
- W3193886260 crossrefType "journal-article" @default.
- W3193886260 hasAuthorship W3193886260A5002321622 @default.
- W3193886260 hasAuthorship W3193886260A5017760611 @default.
- W3193886260 hasAuthorship W3193886260A5087427802 @default.
- W3193886260 hasBestOaLocation W31938862601 @default.
- W3193886260 hasConcept C108583219 @default.
- W3193886260 hasConcept C111919701 @default.
- W3193886260 hasConcept C119857082 @default.
- W3193886260 hasConcept C124101348 @default.
- W3193886260 hasConcept C154945302 @default.
- W3193886260 hasConcept C2944601119 @default.
- W3193886260 hasConcept C41008148 @default.
- W3193886260 hasConcept C98045186 @default.
- W3193886260 hasConceptScore W3193886260C108583219 @default.
- W3193886260 hasConceptScore W3193886260C111919701 @default.
- W3193886260 hasConceptScore W3193886260C119857082 @default.
- W3193886260 hasConceptScore W3193886260C124101348 @default.
- W3193886260 hasConceptScore W3193886260C154945302 @default.
- W3193886260 hasConceptScore W3193886260C2944601119 @default.
- W3193886260 hasConceptScore W3193886260C41008148 @default.
- W3193886260 hasConceptScore W3193886260C98045186 @default.
- W3193886260 hasIssue "16" @default.
- W3193886260 hasLocation W31938862601 @default.
- W3193886260 hasLocation W31938862602 @default.
- W3193886260 hasOpenAccess W3193886260 @default.
- W3193886260 hasPrimaryLocation W31938862601 @default.
- W3193886260 hasRelatedWork W2922457425 @default.
- W3193886260 hasRelatedWork W3014300295 @default.
- W3193886260 hasRelatedWork W3164822677 @default.
- W3193886260 hasRelatedWork W4223943233 @default.
- W3193886260 hasRelatedWork W4225161397 @default.
- W3193886260 hasRelatedWork W4250304930 @default.
- W3193886260 hasRelatedWork W4309045103 @default.
- W3193886260 hasRelatedWork W4312200629 @default.
- W3193886260 hasRelatedWork W4360585206 @default.
- W3193886260 hasRelatedWork W4364306694 @default.
- W3193886260 hasVolume "11" @default.
- W3193886260 isParatext "false" @default.
- W3193886260 isRetracted "false" @default.
- W3193886260 magId "3193886260" @default.
- W3193886260 workType "article" @default.