Matches in SemOpenAlex for { <https://semopenalex.org/work/W3194272457> ?p ?o ?g. }
- W3194272457 endingPage "3232" @default.
- W3194272457 startingPage "3232" @default.
- W3194272457 abstract "Deep learning is now receiving widespread attention in hyperspectral image (HSI) classification. However, due to the imbalance between a huge number of weights and limited training samples, many problems and difficulties have arisen from the use of deep learning methods in HSI classification. To handle this issue, an efficient deep learning-based HSI classification method, namely, spatial-aware network (SANet) has been proposed in this paper. The main idea of SANet is to exploit discriminative spectral-spatial features by incorporating prior domain knowledge into the deep architecture, where edge-preserving side window filters are used as the convolution kernels. Thus, SANet has a small number of parameters to optimize. This makes it fit for small sample sizes. Furthermore, SANet is able not only to aware local spatial structures using side window filtering framework, but also to learn discriminative features making use of the hierarchical architecture and limited label information. The experimental results on four widely used HSI data sets demonstrate that our proposed SANet significantly outperforms many state-of-the-art approaches when only a small number of training samples are available." @default.
- W3194272457 created "2021-08-30" @default.
- W3194272457 creator A5009595085 @default.
- W3194272457 creator A5026977092 @default.
- W3194272457 date "2021-08-14" @default.
- W3194272457 modified "2023-10-05" @default.
- W3194272457 title "Spatial-Aware Network for Hyperspectral Image Classification" @default.
- W3194272457 cites W1897878572 @default.
- W3194272457 cites W1977066218 @default.
- W3194272457 cites W2016860790 @default.
- W3194272457 cites W2029316659 @default.
- W3194272457 cites W2051968191 @default.
- W3194272457 cites W2059110141 @default.
- W3194272457 cites W2087263574 @default.
- W3194272457 cites W2090424610 @default.
- W3194272457 cites W2106777458 @default.
- W3194272457 cites W2114819256 @default.
- W3194272457 cites W2149471024 @default.
- W3194272457 cites W2150990614 @default.
- W3194272457 cites W2151665594 @default.
- W3194272457 cites W2158400785 @default.
- W3194272457 cites W2166923144 @default.
- W3194272457 cites W2290946060 @default.
- W3194272457 cites W2316137913 @default.
- W3194272457 cites W2323917763 @default.
- W3194272457 cites W2412588858 @default.
- W3194272457 cites W2417947228 @default.
- W3194272457 cites W2465503420 @default.
- W3194272457 cites W2558098092 @default.
- W3194272457 cites W2577727229 @default.
- W3194272457 cites W2589232018 @default.
- W3194272457 cites W2608092940 @default.
- W3194272457 cites W2754507318 @default.
- W3194272457 cites W2767805377 @default.
- W3194272457 cites W2768309288 @default.
- W3194272457 cites W2770315464 @default.
- W3194272457 cites W2791006446 @default.
- W3194272457 cites W2793645503 @default.
- W3194272457 cites W2799390666 @default.
- W3194272457 cites W2804458818 @default.
- W3194272457 cites W2809113079 @default.
- W3194272457 cites W2887785636 @default.
- W3194272457 cites W2887798198 @default.
- W3194272457 cites W2888119354 @default.
- W3194272457 cites W2894165434 @default.
- W3194272457 cites W2896847173 @default.
- W3194272457 cites W2899003677 @default.
- W3194272457 cites W2899747753 @default.
- W3194272457 cites W2909560307 @default.
- W3194272457 cites W2942231644 @default.
- W3194272457 cites W2944248482 @default.
- W3194272457 cites W2945768950 @default.
- W3194272457 cites W2948256530 @default.
- W3194272457 cites W2950185713 @default.
- W3194272457 cites W2954870938 @default.
- W3194272457 cites W2962770389 @default.
- W3194272457 cites W2976504085 @default.
- W3194272457 cites W2983167311 @default.
- W3194272457 cites W2985833605 @default.
- W3194272457 cites W2989881034 @default.
- W3194272457 cites W2991494819 @default.
- W3194272457 cites W3003326148 @default.
- W3194272457 cites W3100011500 @default.
- W3194272457 cites W3101640299 @default.
- W3194272457 cites W3104795559 @default.
- W3194272457 cites W3128776197 @default.
- W3194272457 doi "https://doi.org/10.3390/rs13163232" @default.
- W3194272457 hasPublicationYear "2021" @default.
- W3194272457 type Work @default.
- W3194272457 sameAs 3194272457 @default.
- W3194272457 citedByCount "8" @default.
- W3194272457 countsByYear W31942724572022 @default.
- W3194272457 countsByYear W31942724572023 @default.
- W3194272457 crossrefType "journal-article" @default.
- W3194272457 hasAuthorship W3194272457A5009595085 @default.
- W3194272457 hasAuthorship W3194272457A5026977092 @default.
- W3194272457 hasBestOaLocation W31942724571 @default.
- W3194272457 hasConcept C108583219 @default.
- W3194272457 hasConcept C111919701 @default.
- W3194272457 hasConcept C115961682 @default.
- W3194272457 hasConcept C119857082 @default.
- W3194272457 hasConcept C153180895 @default.
- W3194272457 hasConcept C154945302 @default.
- W3194272457 hasConcept C159078339 @default.
- W3194272457 hasConcept C159620131 @default.
- W3194272457 hasConcept C165696696 @default.
- W3194272457 hasConcept C205649164 @default.
- W3194272457 hasConcept C2778751112 @default.
- W3194272457 hasConcept C38652104 @default.
- W3194272457 hasConcept C41008148 @default.
- W3194272457 hasConcept C45347329 @default.
- W3194272457 hasConcept C50644808 @default.
- W3194272457 hasConcept C62649853 @default.
- W3194272457 hasConcept C75294576 @default.
- W3194272457 hasConcept C97931131 @default.
- W3194272457 hasConceptScore W3194272457C108583219 @default.
- W3194272457 hasConceptScore W3194272457C111919701 @default.
- W3194272457 hasConceptScore W3194272457C115961682 @default.