Matches in SemOpenAlex for { <https://semopenalex.org/work/W3194279752> ?p ?o ?g. }
- W3194279752 endingPage "27619" @default.
- W3194279752 startingPage "27607" @default.
- W3194279752 abstract "The group has shown that Baiyun Ebo rare earth concentrate has excellent performance in NH3-SCR denitrification when used as a carrier, where rare earth elements are mainly present in cerium fluorocarbon ore (CeCO3F) and monazite (CePO4) mineral phases. In this paper, a new low-temperature NH3-SCR catalyst of Mn-Fe/CeCO3F-monazite was prepared by an impregnation method, using synthetic CeCO3F and purified monazite as carriers. By exploring its denitrification performance and mechanistic analysis, it provides theoretical guidance for the use of rare earth concentrates as low-temperature NH3-SCR catalysts. Our previous studies have determined the optimum loading of Fe, so this paper needs to be investigated for the optimum doping ratio of the active substance Mn. The results of the activity tests, XRD and BET have determined that the best denitrification rate and catalytic performance was achieved at a ratio of Mn : Ce of 1 : 5. The denitrification activity of the different catalysts was investigated by loading Fe, Mn and Fe and Mn together. The results obtained by means of experimental analyses such as XRD, SEM, BET and activity tests showed that the composite catalyst loaded with Fe and Mn at the same time, had the highest activity and its denitrification rate could reach 94.8% at 250 °C. This is mainly attributed to the fact that the interaction of Fe, Mn can promote the dispersion of each other on the carrier surface, which greatly improves the specific surface area of the catalyst. The introduction of Fe and Mn increases the acidic sites and the amount of acid on the catalyst surface, which results in the formation of a large number of oxygen vacancies and the presence of more oxygen species on the catalyst surface, which facilitate the migration of oxygen. The new catalyst was investigated by Fourier transform infrared (FTIR) spectroscopy to characterise the adsorption and transformation behaviour of the reactive species on the surface of the catalyst, and to investigate the reaction mechanism. The results showed that the entire reaction process followed the L-H mechanism, with the gaseous NO adsorption and activation on the catalyst surface generating bidentate nitrate, bridging nitrate species and NH3/NH4+ species as the main intermediate species involved in the reaction, both of which underwent redox reactions on the catalyst surface to produce N2 and H2O. The above results indicated that the CeCO3F-monazite carrier has excellent performance, and provided a theoretical basis for the high-value utilization of rare earth concentrates." @default.
- W3194279752 created "2021-08-30" @default.
- W3194279752 creator A5031315906 @default.
- W3194279752 creator A5031365162 @default.
- W3194279752 creator A5067121347 @default.
- W3194279752 creator A5083915833 @default.
- W3194279752 date "2021-01-01" @default.
- W3194279752 modified "2023-09-27" @default.
- W3194279752 title "Low temperature NH3-SCR performance and mechanism of Mn and Fe supported CeCO3F-monazite catalysts" @default.
- W3194279752 cites W1973243079 @default.
- W3194279752 cites W1975880620 @default.
- W3194279752 cites W1985653168 @default.
- W3194279752 cites W1987511228 @default.
- W3194279752 cites W1990160658 @default.
- W3194279752 cites W2008368221 @default.
- W3194279752 cites W2024988396 @default.
- W3194279752 cites W2037332948 @default.
- W3194279752 cites W2040456280 @default.
- W3194279752 cites W2041824439 @default.
- W3194279752 cites W2049790452 @default.
- W3194279752 cites W2055616448 @default.
- W3194279752 cites W2059613693 @default.
- W3194279752 cites W2060087760 @default.
- W3194279752 cites W2066108484 @default.
- W3194279752 cites W2072033539 @default.
- W3194279752 cites W2075062931 @default.
- W3194279752 cites W2085600262 @default.
- W3194279752 cites W2089924817 @default.
- W3194279752 cites W2094090465 @default.
- W3194279752 cites W2119887471 @default.
- W3194279752 cites W2158581516 @default.
- W3194279752 cites W2294507160 @default.
- W3194279752 cites W2589659792 @default.
- W3194279752 cites W2590099529 @default.
- W3194279752 cites W2618634512 @default.
- W3194279752 cites W2749032744 @default.
- W3194279752 cites W2759611275 @default.
- W3194279752 cites W2803318318 @default.
- W3194279752 cites W2921333375 @default.
- W3194279752 cites W2939448570 @default.
- W3194279752 cites W2971698102 @default.
- W3194279752 cites W3195276552 @default.
- W3194279752 doi "https://doi.org/10.1039/d1ra05435j" @default.
- W3194279752 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35480663" @default.
- W3194279752 hasPublicationYear "2021" @default.
- W3194279752 type Work @default.
- W3194279752 sameAs 3194279752 @default.
- W3194279752 citedByCount "0" @default.
- W3194279752 crossrefType "journal-article" @default.
- W3194279752 hasAuthorship W3194279752A5031315906 @default.
- W3194279752 hasAuthorship W3194279752A5031365162 @default.
- W3194279752 hasAuthorship W3194279752A5067121347 @default.
- W3194279752 hasAuthorship W3194279752A5083915833 @default.
- W3194279752 hasBestOaLocation W31942797521 @default.
- W3194279752 hasConcept C120665830 @default.
- W3194279752 hasConcept C121332964 @default.
- W3194279752 hasConcept C127313418 @default.
- W3194279752 hasConcept C127413603 @default.
- W3194279752 hasConcept C13965031 @default.
- W3194279752 hasConcept C150581940 @default.
- W3194279752 hasConcept C151730666 @default.
- W3194279752 hasConcept C161790260 @default.
- W3194279752 hasConcept C177562468 @default.
- W3194279752 hasConcept C178790620 @default.
- W3194279752 hasConcept C179104552 @default.
- W3194279752 hasConcept C185592680 @default.
- W3194279752 hasConcept C192562407 @default.
- W3194279752 hasConcept C199289684 @default.
- W3194279752 hasConcept C2776212575 @default.
- W3194279752 hasConcept C2778849375 @default.
- W3194279752 hasConcept C2983155866 @default.
- W3194279752 hasConcept C42360764 @default.
- W3194279752 hasConcept C49040817 @default.
- W3194279752 hasConcept C523597863 @default.
- W3194279752 hasConcept C537208039 @default.
- W3194279752 hasConcept C57863236 @default.
- W3194279752 hasConcept C73593433 @default.
- W3194279752 hasConceptScore W3194279752C120665830 @default.
- W3194279752 hasConceptScore W3194279752C121332964 @default.
- W3194279752 hasConceptScore W3194279752C127313418 @default.
- W3194279752 hasConceptScore W3194279752C127413603 @default.
- W3194279752 hasConceptScore W3194279752C13965031 @default.
- W3194279752 hasConceptScore W3194279752C150581940 @default.
- W3194279752 hasConceptScore W3194279752C151730666 @default.
- W3194279752 hasConceptScore W3194279752C161790260 @default.
- W3194279752 hasConceptScore W3194279752C177562468 @default.
- W3194279752 hasConceptScore W3194279752C178790620 @default.
- W3194279752 hasConceptScore W3194279752C179104552 @default.
- W3194279752 hasConceptScore W3194279752C185592680 @default.
- W3194279752 hasConceptScore W3194279752C192562407 @default.
- W3194279752 hasConceptScore W3194279752C199289684 @default.
- W3194279752 hasConceptScore W3194279752C2776212575 @default.
- W3194279752 hasConceptScore W3194279752C2778849375 @default.
- W3194279752 hasConceptScore W3194279752C2983155866 @default.
- W3194279752 hasConceptScore W3194279752C42360764 @default.
- W3194279752 hasConceptScore W3194279752C49040817 @default.
- W3194279752 hasConceptScore W3194279752C523597863 @default.
- W3194279752 hasConceptScore W3194279752C537208039 @default.