Matches in SemOpenAlex for { <https://semopenalex.org/work/W3194335755> ?p ?o ?g. }
- W3194335755 endingPage "117168" @default.
- W3194335755 startingPage "117153" @default.
- W3194335755 abstract "Deep learning attempts medical image denoising either by directly learning the noise present or via first learning the image content. We observe that residual learning (RL) often suffers from signal leakage while dictionary learning (DL) is prone to Gibbs (ringing) artifacts. In this paper, we propose an unsupervised noise learning framework that enhances denoising by augmenting the limitation of RL with the strength of DL and vice versa. To this end, we propose a ten-layer deep residue network (DRN) augmented with patch-based dictionaries. The input images are presented to patch-based DL to indirectly learn the noise via sparse representation while given to the DRN to directly learn the noise. An optimum noise characterization is captured by iterating DL/DRN network against proposed loss. The denoised images are obtained by subtracting the learned noise from available data. We show that augmented DRN effectively handles high-frequency regions to avoid Gibbs artifacts due to DL while augmented DL helps to reduce the overfitting due to RL. Comparative experiments with many state-of-the-arts on MRI and CT datasets (2D/3D) including low-dose CT (LDCT) are conducted on a GPU-based supercomputer. The proposed network is trained by adding different levels of Rician noise for MRI and Poisson noise for CT images considering different nature and statistical distribution of datasets. The ablation studies are carried out that demonstrate enhanced denoising performance with minimal signal leakage and least artifacts by proposed augmented approach." @default.
- W3194335755 created "2021-08-30" @default.
- W3194335755 creator A5001216338 @default.
- W3194335755 creator A5015096015 @default.
- W3194335755 creator A5075822182 @default.
- W3194335755 date "2021-01-01" @default.
- W3194335755 modified "2023-09-29" @default.
- W3194335755 title "Augmented Noise Learning Framework for Enhancing Medical Image Denoising" @default.
- W3194335755 cites W1594234351 @default.
- W3194335755 cites W1630816465 @default.
- W3194335755 cites W1964394948 @default.
- W3194335755 cites W1989011241 @default.
- W3194335755 cites W2001234856 @default.
- W3194335755 cites W2014940628 @default.
- W3194335755 cites W2029816571 @default.
- W3194335755 cites W2046372571 @default.
- W3194335755 cites W2056370875 @default.
- W3194335755 cites W2064076387 @default.
- W3194335755 cites W2064225328 @default.
- W3194335755 cites W2073660032 @default.
- W3194335755 cites W2101891472 @default.
- W3194335755 cites W2109577576 @default.
- W3194335755 cites W2110492881 @default.
- W3194335755 cites W2119047398 @default.
- W3194335755 cites W2127271355 @default.
- W3194335755 cites W2136396015 @default.
- W3194335755 cites W2137969878 @default.
- W3194335755 cites W2138018102 @default.
- W3194335755 cites W2154041909 @default.
- W3194335755 cites W2160547390 @default.
- W3194335755 cites W2168668658 @default.
- W3194335755 cites W2570202822 @default.
- W3194335755 cites W2584483805 @default.
- W3194335755 cites W2592929672 @default.
- W3194335755 cites W2618025634 @default.
- W3194335755 cites W2621235041 @default.
- W3194335755 cites W2631883531 @default.
- W3194335755 cites W2743780012 @default.
- W3194335755 cites W2790477006 @default.
- W3194335755 cites W2887579808 @default.
- W3194335755 cites W2890139949 @default.
- W3194335755 cites W2890272118 @default.
- W3194335755 cites W2890387360 @default.
- W3194335755 cites W2903444831 @default.
- W3194335755 cites W2919234133 @default.
- W3194335755 cites W2922904612 @default.
- W3194335755 cites W2937694781 @default.
- W3194335755 cites W2941642631 @default.
- W3194335755 cites W2958439762 @default.
- W3194335755 cites W2964317695 @default.
- W3194335755 cites W2988553273 @default.
- W3194335755 cites W2990014955 @default.
- W3194335755 cites W3002879859 @default.
- W3194335755 cites W3032190803 @default.
- W3194335755 cites W3036586801 @default.
- W3194335755 cites W3041466907 @default.
- W3194335755 cites W3041500444 @default.
- W3194335755 cites W3098281398 @default.
- W3194335755 cites W3103261259 @default.
- W3194335755 cites W3104340120 @default.
- W3194335755 cites W3105299938 @default.
- W3194335755 cites W3116570699 @default.
- W3194335755 cites W4254479912 @default.
- W3194335755 cites W2810034908 @default.
- W3194335755 doi "https://doi.org/10.1109/access.2021.3106707" @default.
- W3194335755 hasPublicationYear "2021" @default.
- W3194335755 type Work @default.
- W3194335755 sameAs 3194335755 @default.
- W3194335755 citedByCount "6" @default.
- W3194335755 countsByYear W31943357552022 @default.
- W3194335755 countsByYear W31943357552023 @default.
- W3194335755 crossrefType "journal-article" @default.
- W3194335755 hasAuthorship W3194335755A5001216338 @default.
- W3194335755 hasAuthorship W3194335755A5015096015 @default.
- W3194335755 hasAuthorship W3194335755A5075822182 @default.
- W3194335755 hasBestOaLocation W31943357551 @default.
- W3194335755 hasConcept C108583219 @default.
- W3194335755 hasConcept C115961682 @default.
- W3194335755 hasConcept C124066611 @default.
- W3194335755 hasConcept C153180895 @default.
- W3194335755 hasConcept C154945302 @default.
- W3194335755 hasConcept C163294075 @default.
- W3194335755 hasConcept C205711294 @default.
- W3194335755 hasConcept C41008148 @default.
- W3194335755 hasConcept C99498987 @default.
- W3194335755 hasConceptScore W3194335755C108583219 @default.
- W3194335755 hasConceptScore W3194335755C115961682 @default.
- W3194335755 hasConceptScore W3194335755C124066611 @default.
- W3194335755 hasConceptScore W3194335755C153180895 @default.
- W3194335755 hasConceptScore W3194335755C154945302 @default.
- W3194335755 hasConceptScore W3194335755C163294075 @default.
- W3194335755 hasConceptScore W3194335755C205711294 @default.
- W3194335755 hasConceptScore W3194335755C41008148 @default.
- W3194335755 hasConceptScore W3194335755C99498987 @default.
- W3194335755 hasLocation W31943357551 @default.
- W3194335755 hasOpenAccess W3194335755 @default.
- W3194335755 hasPrimaryLocation W31943357551 @default.
- W3194335755 hasRelatedWork W1945544474 @default.