Matches in SemOpenAlex for { <https://semopenalex.org/work/W3194342768> ?p ?o ?g. }
- W3194342768 abstract "The asymptotic stable region and long-time decay rate of solutions to linear homogeneous Caputo time fractional ordinary differential equations (F-ODEs) are known to be completely determined by the eigenvalues of the coefficient matrix. Very different from the exponential decay of solutions to classical ODEs, solutions of F-ODEs decay only polynomially, leading to the so-called Mittag-Leffler stability, which was already extended to semi-linear F-ODEs with small perturbations. This work is mainly devoted to the qualitative analysis of the long-time behavior of numerical solutions. By applying the singularity analysis of generating functions developed by Flajolet and Odlyzko (SIAM J. Disc. Math. 3 (1990), 216-240), we are able to prove that both $mathcal{L}$1 scheme and strong $A$-stable fractional linear multistep methods (F-LMMs) can preserve the numerical Mittag-Leffler stability for linear homogeneous F-ODEs exactly as in the continuous case. Through an improved estimate of the discrete fractional resolvent operator, we show that strong $A$-stable F-LMMs are also Mittag-Leffler stable for semi-linear F-ODEs under small perturbations. For the numerical schemes based on $alpha$-difference approximation to Caputo derivative, we establish the Mittag-Leffler stability for semi-linear problems by making use of properties of the Poisson transformation and the decay rate of the continuous fractional resolvent operator. Numerical experiments are presented for several typical time fractional evolutional equations, including time fractional sub-diffusion equations, fractional linear system and semi-linear F-ODEs. All the numerical results exhibit the typical long-time polynomial decay rate, which is fully consistent with our theoretical predictions." @default.
- W3194342768 created "2021-08-30" @default.
- W3194342768 creator A5037198617 @default.
- W3194342768 creator A5090609331 @default.
- W3194342768 date "2021-08-21" @default.
- W3194342768 modified "2023-09-27" @default.
- W3194342768 title "Mittag--Leffler stability of numerical solutions to time fractional ODEs" @default.
- W3194342768 cites W1509923322 @default.
- W3194342768 cites W1522745717 @default.
- W3194342768 cites W1575147392 @default.
- W3194342768 cites W1802630318 @default.
- W3194342768 cites W1969312973 @default.
- W3194342768 cites W1978345715 @default.
- W3194342768 cites W1979313496 @default.
- W3194342768 cites W2000434452 @default.
- W3194342768 cites W2004202105 @default.
- W3194342768 cites W2018919817 @default.
- W3194342768 cites W2039099273 @default.
- W3194342768 cites W2069272169 @default.
- W3194342768 cites W2070438803 @default.
- W3194342768 cites W2165076033 @default.
- W3194342768 cites W2340541605 @default.
- W3194342768 cites W2490352015 @default.
- W3194342768 cites W2511264644 @default.
- W3194342768 cites W2567237076 @default.
- W3194342768 cites W2585014300 @default.
- W3194342768 cites W2601627861 @default.
- W3194342768 cites W2608656286 @default.
- W3194342768 cites W2617651464 @default.
- W3194342768 cites W2783310902 @default.
- W3194342768 cites W2787959293 @default.
- W3194342768 cites W2794616828 @default.
- W3194342768 cites W2888145986 @default.
- W3194342768 cites W2955902581 @default.
- W3194342768 cites W2963392111 @default.
- W3194342768 cites W2963688266 @default.
- W3194342768 cites W2964083141 @default.
- W3194342768 cites W2964236115 @default.
- W3194342768 cites W2964280407 @default.
- W3194342768 cites W2978959279 @default.
- W3194342768 cites W2981338688 @default.
- W3194342768 cites W2994269868 @default.
- W3194342768 cites W3006903434 @default.
- W3194342768 cites W3028371878 @default.
- W3194342768 cites W3093580437 @default.
- W3194342768 cites W3103638177 @default.
- W3194342768 cites W3106441075 @default.
- W3194342768 cites W3182314688 @default.
- W3194342768 cites W617317968 @default.
- W3194342768 doi "https://doi.org/10.48550/arxiv.2108.09620" @default.
- W3194342768 hasPublicationYear "2021" @default.
- W3194342768 type Work @default.
- W3194342768 sameAs 3194342768 @default.
- W3194342768 citedByCount "0" @default.
- W3194342768 crossrefType "posted-content" @default.
- W3194342768 hasAuthorship W3194342768A5037198617 @default.
- W3194342768 hasAuthorship W3194342768A5090609331 @default.
- W3194342768 hasBestOaLocation W31943427681 @default.
- W3194342768 hasConcept C104317684 @default.
- W3194342768 hasConcept C112972136 @default.
- W3194342768 hasConcept C119857082 @default.
- W3194342768 hasConcept C121332964 @default.
- W3194342768 hasConcept C134306372 @default.
- W3194342768 hasConcept C154249771 @default.
- W3194342768 hasConcept C158448853 @default.
- W3194342768 hasConcept C158622935 @default.
- W3194342768 hasConcept C167964875 @default.
- W3194342768 hasConcept C17020691 @default.
- W3194342768 hasConcept C185592680 @default.
- W3194342768 hasConcept C196267783 @default.
- W3194342768 hasConcept C28826006 @default.
- W3194342768 hasConcept C33923547 @default.
- W3194342768 hasConcept C34862557 @default.
- W3194342768 hasConcept C41008148 @default.
- W3194342768 hasConcept C43466630 @default.
- W3194342768 hasConcept C51544822 @default.
- W3194342768 hasConcept C55493867 @default.
- W3194342768 hasConcept C62520636 @default.
- W3194342768 hasConcept C78045399 @default.
- W3194342768 hasConcept C86339819 @default.
- W3194342768 hasConceptScore W3194342768C104317684 @default.
- W3194342768 hasConceptScore W3194342768C112972136 @default.
- W3194342768 hasConceptScore W3194342768C119857082 @default.
- W3194342768 hasConceptScore W3194342768C121332964 @default.
- W3194342768 hasConceptScore W3194342768C134306372 @default.
- W3194342768 hasConceptScore W3194342768C154249771 @default.
- W3194342768 hasConceptScore W3194342768C158448853 @default.
- W3194342768 hasConceptScore W3194342768C158622935 @default.
- W3194342768 hasConceptScore W3194342768C167964875 @default.
- W3194342768 hasConceptScore W3194342768C17020691 @default.
- W3194342768 hasConceptScore W3194342768C185592680 @default.
- W3194342768 hasConceptScore W3194342768C196267783 @default.
- W3194342768 hasConceptScore W3194342768C28826006 @default.
- W3194342768 hasConceptScore W3194342768C33923547 @default.
- W3194342768 hasConceptScore W3194342768C34862557 @default.
- W3194342768 hasConceptScore W3194342768C41008148 @default.
- W3194342768 hasConceptScore W3194342768C43466630 @default.
- W3194342768 hasConceptScore W3194342768C51544822 @default.
- W3194342768 hasConceptScore W3194342768C55493867 @default.
- W3194342768 hasConceptScore W3194342768C62520636 @default.