Matches in SemOpenAlex for { <https://semopenalex.org/work/W3194368279> ?p ?o ?g. }
- W3194368279 endingPage "101082" @default.
- W3194368279 startingPage "101082" @default.
- W3194368279 abstract "Heat shock proteins of 110 kDa (Hsp110s), a unique class of molecular chaperones, are essential for maintaining protein homeostasis. Hsp110s exhibit a strong chaperone activity preventing protein aggregation (the “holdase” activity) and also function as the major nucleotide-exchange factor (NEF) for Hsp70 chaperones. Hsp110s contain two functional domains: a nucleotide-binding domain (NBD) and substrate-binding domain (SBD). ATP binding is essential for Hsp110 function and results in close contacts between the NBD and SBD. However, the molecular mechanism of this ATP-induced allosteric coupling remains poorly defined. In this study, we carried out biochemical analysis on Msi3, the sole Hsp110 in Candida albicans, to dissect the unique allosteric coupling of Hsp110s using three mutations affecting the domain–domain interface. All the mutations abolished both the in vivo and in vitro functions of Msi3. While the ATP-bound state was disrupted in all mutants, only mutation of the NBD-SBDβ interfaces showed significant ATPase activity, suggesting that the full-length Hsp110s have an ATPase that is mainly suppressed by NBD-SBDβ contacts. Moreover, the high-affinity ATP-binding unexpectedly appears to require these NBD-SBD contacts. Remarkably, the “holdase” activity was largely intact for all mutants tested while NEF activity was mostly compromised, although both activities strictly depended on the ATP-bound state, indicating different requirements for these two activities. Stable peptide substrate binding to Msi3 led to dissociation of the NBD-SBD contacts and compromised interactions with Hsp70. Taken together, our data demonstrate that the exceptionally strong NBD-SBD contacts in Hsp110s dictate the unique allosteric coupling and biochemical activities. Heat shock proteins of 110 kDa (Hsp110s), a unique class of molecular chaperones, are essential for maintaining protein homeostasis. Hsp110s exhibit a strong chaperone activity preventing protein aggregation (the “holdase” activity) and also function as the major nucleotide-exchange factor (NEF) for Hsp70 chaperones. Hsp110s contain two functional domains: a nucleotide-binding domain (NBD) and substrate-binding domain (SBD). ATP binding is essential for Hsp110 function and results in close contacts between the NBD and SBD. However, the molecular mechanism of this ATP-induced allosteric coupling remains poorly defined. In this study, we carried out biochemical analysis on Msi3, the sole Hsp110 in Candida albicans, to dissect the unique allosteric coupling of Hsp110s using three mutations affecting the domain–domain interface. All the mutations abolished both the in vivo and in vitro functions of Msi3. While the ATP-bound state was disrupted in all mutants, only mutation of the NBD-SBDβ interfaces showed significant ATPase activity, suggesting that the full-length Hsp110s have an ATPase that is mainly suppressed by NBD-SBDβ contacts. Moreover, the high-affinity ATP-binding unexpectedly appears to require these NBD-SBD contacts. Remarkably, the “holdase” activity was largely intact for all mutants tested while NEF activity was mostly compromised, although both activities strictly depended on the ATP-bound state, indicating different requirements for these two activities. Stable peptide substrate binding to Msi3 led to dissociation of the NBD-SBD contacts and compromised interactions with Hsp70. Taken together, our data demonstrate that the exceptionally strong NBD-SBD contacts in Hsp110s dictate the unique allosteric coupling and biochemical activities. Heat shock proteins of 110 kDa (Hsp110s) form a unique class of molecular chaperones (1Easton D.P. Kaneko Y. Subjeck J.R. The hsp110 and Grp1 70 stress proteins: Newly recognized relatives of the Hsp70s.Cell Stress Chaperones. 2000; 5: 276-290Crossref PubMed Scopus (240) Google Scholar, 2Lee-Yoon D. Easton D. Murawski M. Burd R. Subjeck J.R. Identification of a major subfamily of large hsp70-like proteins through the cloning of the mammalian 110-kDa heat shock protein.J. Biol. Chem. 1995; 270: 15725-15733Abstract Full Text Full Text PDF PubMed Scopus (128) Google Scholar, 3Raviol H. Sadlish H. Rodriguez F. Mayer M.P. Bukau B. Chaperone network in the yeast cytosol: Hsp110 is revealed as an Hsp70 nucleotide exchange factor.EMBO J. 2006; 25: 2510-2518Crossref PubMed Scopus (208) Google Scholar, 4Dragovic Z. Broadley S.A. Shomura Y. Bracher A. Hartl F.U. Molecular chaperones of the Hsp110 family act as nucleotide exchange factors of Hsp70s.EMBO J. 2006; 25: 2519-2528Crossref PubMed Scopus (261) Google Scholar, 5Yam A.Y. Albanese V. Lin H.T. Frydman J. Hsp110 cooperates with different cytosolic HSP70 systems in a pathway for de novo folding.J. Biol. Chem. 2005; 280: 41252-41261Abstract Full Text Full Text PDF PubMed Scopus (72) Google Scholar, 6Shaner L. Trott A. Goeckeler J.L. Brodsky J.L. Morano K.A. The function of the yeast molecular chaperone Sse1 is mechanistically distinct from the closely related hsp70 family.J. Biol. Chem. 2004; 279: 21992-22001Abstract Full Text Full Text PDF PubMed Scopus (74) Google Scholar, 7Liu X.D. Morano K.A. Thiele D.J. The yeast Hsp110 family member, Sse1, is an Hsp90 cochaperone.J. Biol. Chem. 1999; 274: 26654-26660Abstract Full Text Full Text PDF PubMed Scopus (101) Google Scholar, 8Shaner L. Morano K.A. All in the family: Atypical Hsp70 chaperones are conserved modulators of Hsp70 activity.Cell Stress Chaperones. 2007; 12: 1-8Crossref PubMed Scopus (77) Google Scholar, 9Yakubu U.M. Morano K.A. Roles of the nucleotide exchange factor and chaperone Hsp110 in cellular proteostasis and diseases of protein misfolding.Biol. Chem. 2018; 399: 1215-1221Crossref PubMed Scopus (12) Google Scholar). Ubiquitously present in the eukaryotic cytosol, they play an essential role in maintaining cellular protein homeostasis. Through this role, they provide essential protections for eukaryotic organisms against various stress conditions, including many human diseases. Thus, it is paramount to characterize the precise mechanism(s) of their action in maintaining protein homeostasis to understand their protective role against various diseases. As distant homologs of Hsp70s, Hsp110s are both chaperones on their own and cochaperones for Hsp70s. Hsp70s, an essential and universal class of molecular chaperones, play key roles in virtually all known processes in maintaining protein homeostasis (10Bukau B. Weissman J. Horwich A. Molecular chaperones and protein quality control.Cell. 2006; 125: 443-451Abstract Full Text Full Text PDF PubMed Scopus (1171) Google Scholar, 11Mayer M.P. Bukau B. Hsp70 chaperones: Cellular functions and molecular mechanism.Cell Mol. Life Sci. 2005; 62: 670-684Crossref PubMed Scopus (1993) Google Scholar, 12Balchin D. Hayer-Hartl M. Hartl F.U. In vivo aspects of protein folding and quality control.Science. 2016; 353: aac4354Crossref PubMed Scopus (702) Google Scholar, 13Young J.C. Mechanisms of the Hsp70 chaperone system.Biochem. Cell Biol. 2010; 88: 291-300Crossref PubMed Scopus (144) Google Scholar, 14Liu Q. Liang C. Zhou L. Structural and functional analysis of the Hsp70/Hsp40 chaperone system.Protein Sci. 2020; 29: 378-390Crossref PubMed Scopus (33) Google Scholar, 15Fernandez-Fernandez M.R. Valpuesta J.M. Hsp70 chaperone: A master player in protein homeostasis.F1000Res. 2018; 7 (F1000 Faculty Rev-1497)Crossref PubMed Google Scholar, 16Pobre K.F.R. Poet G.J. Hendershot L.M. The endoplasmic reticulum (ER) chaperone BiP is a master regulator of ER functions: Getting by with a little help from ERdj friends.J. Biol. Chem. 2019; 294: 2098-2108Abstract Full Text Full Text PDF PubMed Scopus (136) Google Scholar, 17Zuiderweg E.R. Hightower L.E. Gestwicki J.E. The remarkable multivalency of the Hsp70 chaperones.Cell Stress Chaperones. 2017; 22: 173-189Crossref PubMed Scopus (75) Google Scholar). Hsp110s, by themselves, have potent chaperone activity in preventing the aggregation of denatured proteins, the “holdase” activity (18Oh H.J. Chen X. Subjeck J.R. Hsp110 protects heat-denatured proteins and confers cellular thermoresistance.J. Biol. Chem. 1997; 272: 31636-31640Abstract Full Text Full Text PDF PubMed Scopus (171) Google Scholar, 19Goeckeler J.L. Stephens A. Lee P. Caplan A.J. Brodsky J.L. Overexpression of yeast Hsp110 homolog Sse1p suppresses ydj1-151 thermosensitivity and restores Hsp90-dependent activity.Mol. Biol. Cell. 2002; 13: 2760-2770Crossref PubMed Scopus (69) Google Scholar, 20Mattoo R.U. Sharma S.K. Priya S. Finka A. Goloubinoff P. Hsp110 is a bona fide chaperone using ATP to unfold stable misfolded polypeptides and reciprocally collaborate with Hsp70 to solubilize protein aggregates.J. Biol. Chem. 2013; 288: 21399-21411Abstract Full Text Full Text PDF PubMed Scopus (108) Google Scholar, 21Taguchi Y.V. Gorenberg E.L. Nagy M. Thrasher D. Fenton W.A. Volpicelli-Daley L. Horwich A.L. Chandra S.S. Hsp110 mitigates alpha-synuclein pathology in vivo.Proc. Natl. Acad. Sci. U. S. A. 2019; 116: 24310-24316Crossref PubMed Scopus (24) Google Scholar). However, they lack the hallmark activity of Hsp70s in assisting protein folding directly. As cochaperones, Hsp110s have been shown to function as the major nucleotide-exchange factors (NEFs) for cytosolic Hsp70s, facilitating the exchange of ADP for ATP in Hsp70s after ATP hydrolysis (3Raviol H. Sadlish H. Rodriguez F. Mayer M.P. Bukau B. Chaperone network in the yeast cytosol: Hsp110 is revealed as an Hsp70 nucleotide exchange factor.EMBO J. 2006; 25: 2510-2518Crossref PubMed Scopus (208) Google Scholar, 4Dragovic Z. Broadley S.A. Shomura Y. Bracher A. Hartl F.U. Molecular chaperones of the Hsp110 family act as nucleotide exchange factors of Hsp70s.EMBO J. 2006; 25: 2519-2528Crossref PubMed Scopus (261) Google Scholar, 9Yakubu U.M. Morano K.A. Roles of the nucleotide exchange factor and chaperone Hsp110 in cellular proteostasis and diseases of protein misfolding.Biol. Chem. 2018; 399: 1215-1221Crossref PubMed Scopus (12) Google Scholar, 22Andreasson C. Fiaux J. Rampelt H. Mayer M.P. Bukau B. Hsp110 is a nucleotide-activated exchange factor for Hsp70.J. Biol. Chem. 2008; 283: 8877-8884Abstract Full Text Full Text PDF PubMed Scopus (112) Google Scholar, 23Bracher A. Verghese J. The nucleotide exchange factors of Hsp70 molecular chaperones.Front. Mol. Biosci. 2015; 2: 10Crossref PubMed Scopus (126) Google Scholar). Various studies have demonstrated that Hsp110s participate in almost all the processes that are associated with cytosolic Hsp70s including de novo protein folding and refolding under stress, protein transportation into the endoplasmic reticulum, solubilizing protein aggregates, and protein degradation (1Easton D.P. Kaneko Y. Subjeck J.R. The hsp110 and Grp1 70 stress proteins: Newly recognized relatives of the Hsp70s.Cell Stress Chaperones. 2000; 5: 276-290Crossref PubMed Scopus (240) Google Scholar, 5Yam A.Y. Albanese V. Lin H.T. Frydman J. Hsp110 cooperates with different cytosolic HSP70 systems in a pathway for de novo folding.J. Biol. Chem. 2005; 280: 41252-41261Abstract Full Text Full Text PDF PubMed Scopus (72) Google Scholar, 7Liu X.D. Morano K.A. Thiele D.J. The yeast Hsp110 family member, Sse1, is an Hsp90 cochaperone.J. Biol. Chem. 1999; 274: 26654-26660Abstract Full Text Full Text PDF PubMed Scopus (101) Google Scholar, 8Shaner L. Morano K.A. All in the family: Atypical Hsp70 chaperones are conserved modulators of Hsp70 activity.Cell Stress Chaperones. 2007; 12: 1-8Crossref PubMed Scopus (77) Google Scholar, 9Yakubu U.M. Morano K.A. Roles of the nucleotide exchange factor and chaperone Hsp110 in cellular proteostasis and diseases of protein misfolding.Biol. Chem. 2018; 399: 1215-1221Crossref PubMed Scopus (12) Google Scholar, 18Oh H.J. Chen X. Subjeck J.R. Hsp110 protects heat-denatured proteins and confers cellular thermoresistance.J. Biol. Chem. 1997; 272: 31636-31640Abstract Full Text Full Text PDF PubMed Scopus (171) Google Scholar, 19Goeckeler J.L. Stephens A. Lee P. Caplan A.J. Brodsky J.L. Overexpression of yeast Hsp110 homolog Sse1p suppresses ydj1-151 thermosensitivity and restores Hsp90-dependent activity.Mol. Biol. Cell. 2002; 13: 2760-2770Crossref PubMed Scopus (69) Google Scholar, 20Mattoo R.U. Sharma S.K. Priya S. Finka A. Goloubinoff P. Hsp110 is a bona fide chaperone using ATP to unfold stable misfolded polypeptides and reciprocally collaborate with Hsp70 to solubilize protein aggregates.J. Biol. Chem. 2013; 288: 21399-21411Abstract Full Text Full Text PDF PubMed Scopus (108) Google Scholar, 24Shaner L. Wegele H. Buchner J. Morano K.A. The yeast Hsp110 Sse1 functionally interacts with the Hsp70 chaperones Ssa and Ssb.J. Biol. Chem. 2005; 280: 41262-41269Abstract Full Text Full Text PDF PubMed Scopus (81) Google Scholar, 25Albanese V. Yam A.Y. Baughman J. Parnot C. Frydman J. Systems analyses reveal two chaperone networks with distinct functions in eukaryotic cells.Cell. 2006; 124: 75-88Abstract Full Text Full Text PDF PubMed Scopus (194) Google Scholar, 26Fan Q. Park K.W. Du Z. Morano K.A. Li L. The role of Sse1 in the de novo formation and variant determination of the [PSI+] prion.Genetics. 2007; 177: 1583-1593Crossref PubMed Scopus (73) Google Scholar, 27Hrizo S.L. Gusarova V. Habiel D.M. Goeckeler J.L. Fisher E.A. Brodsky J.L. The Hsp110 molecular chaperone stabilizes apolipoprotein B from endoplasmic reticulum-associated degradation (ERAD).J. Biol. Chem. 2007; 282: 32665-32675Abstract Full Text Full Text PDF PubMed Scopus (58) Google Scholar, 28Shorter J. The mammalian disaggregase machinery: Hsp110 synergizes with Hsp70 and Hsp40 to catalyze protein disaggregation and reactivation in a cell-free system.PLoS One. 2011; 6e26319Crossref PubMed Scopus (215) Google Scholar, 29Torrente M.P. Shorter J. The metazoan protein disaggregase and amyloid depolymerase system: Hsp110, Hsp70, Hsp40, and small heat shock proteins.Prion. 2013; 7: 457-463Crossref PubMed Scopus (52) Google Scholar, 30Muralidharan V. Oksman A. Pal P. Lindquist S. Goldberg D.E. Plasmodium falciparum heat shock protein 110 stabilizes the asparagine repeat-rich parasite proteome during malarial fevers.Nat. Commun. 2012; 3: 1310Crossref PubMed Scopus (85) Google Scholar, 31Rampelt H. Kirstein-Miles J. Nillegoda N.B. Chi K. Scholz S.R. Morimoto R.I. Bukau B. Metazoan Hsp70 machines use Hsp110 to power protein disaggregation.EMBO J. 2012; 31: 4221-4235Crossref PubMed Scopus (213) Google Scholar, 32Mandal A.K. Gibney P.A. Nillegoda N.B. Theodoraki M.A. Caplan A.J. Morano K.A. Hsp110 chaperones control client fate determination in the hsp70-Hsp90 chaperone system.Mol. Biol. Cell. 2010; 21: 1439-1448Crossref PubMed Google Scholar, 33Ravindran M.S. Bagchi P. Inoue T. Tsai B. A non-enveloped virus hijacks host disaggregation machinery to translocate across the endoplasmic reticulum membrane.PLoS Pathog. 2015; 11e1005086Crossref PubMed Scopus (37) Google Scholar, 34Gao X. Carroni M. Nussbaum-Krammer C. Mogk A. Nillegoda N.B. Szlachcic A. Guilbride D.L. Saibil H.R. Mayer M.P. Bukau B. Human Hsp70 disaggregase reverses Parkinson's-linked alpha-synuclein amyloid fibrils.Mol. Cell. 2015; 59: 781-793Abstract Full Text Full Text PDF PubMed Scopus (218) Google Scholar, 35Kandasamy G. Andreasson C. Hsp70-Hsp110 chaperones deliver ubiquitin-dependent and -independent substrates to the 26S proteasome for proteolysis in yeast.J. Cell Sci. 2018; 131jcs210948Crossref PubMed Scopus (23) Google Scholar, 36Moran C. Kinsella G.K. Zhang Z.R. Perrett S. Jones G.W. Mutational analysis of Sse1 (Hsp110) suggests an integral role for this chaperone in yeast prion propagation in vivo.G3 (Bethesda). 2013; 3: 1409-1418Crossref PubMed Scopus (13) Google Scholar, 37O'Driscoll J. Clare D. Saibil H. Prion aggregate structure in yeast cells is determined by the Hsp104-Hsp110 disaggregase machinery.J. Cell Biol. 2015; 211: 145-158Crossref PubMed Scopus (21) Google Scholar, 38Hatayama T. Yasuda K. Association of HSP105 with HSC70 in high molecular mass complexes in mouse FM3A cells.Biochem. Biophys. Res. Commun. 1998; 248: 395-401Crossref PubMed Scopus (46) Google Scholar, 39Wang X.Y. Chen X. Oh H.J. Repasky E. Kazim L. Subjeck J. Characterization of native interaction of hsp110 with hsp25 and hsc70.FEBS Lett. 2000; 465: 98-102Crossref PubMed Scopus (44) Google Scholar). However, the functional roles of Hsp110s beyond NEFs remain a mystery. The unique biochemical properties of Hsp110s dictate their special chaperone activities. As homologs, Hsp110s share the same domain organization as Hsp70s (1Easton D.P. Kaneko Y. Subjeck J.R. The hsp110 and Grp1 70 stress proteins: Newly recognized relatives of the Hsp70s.Cell Stress Chaperones. 2000; 5: 276-290Crossref PubMed Scopus (240) Google Scholar, 8Shaner L. Morano K.A. All in the family: Atypical Hsp70 chaperones are conserved modulators of Hsp70 activity.Cell Stress Chaperones. 2007; 12: 1-8Crossref PubMed Scopus (77) Google Scholar, 9Yakubu U.M. Morano K.A. Roles of the nucleotide exchange factor and chaperone Hsp110 in cellular proteostasis and diseases of protein misfolding.Biol. Chem. 2018; 399: 1215-1221Crossref PubMed Scopus (12) Google Scholar, 14Liu Q. Liang C. Zhou L. Structural and functional analysis of the Hsp70/Hsp40 chaperone system.Protein Sci. 2020; 29: 378-390Crossref PubMed Scopus (33) Google Scholar, 40Liu Q. Hendrickson W.A. Insights into Hsp70 chaperone activity from a crystal structure of the yeast Hsp110 Sse1.Cell. 2007; 131: 106-120Abstract Full Text Full Text PDF PubMed Scopus (190) Google Scholar). Both Hsp110s and Hsp70s have two functional domains: a nucleotide-binding domain (NBD) at the N-terminus and a substrate-binding domain (SBD) at the C-terminus. The SBD is further divided into SBDβ and SBDα. Connecting these two functional domains is a short interdomain linker. Hsp110s are larger in size due to an insertion in the SBDβ and a C-terminal extension beyond the SBDα. A recent study suggested a novel substrate-binding site in the C-terminal extension region of metazoan Hsp110s but not yeast Hsp110s (41Yakubu U.M. Morano K.A. Suppression of aggregate and amyloid formation by a novel intrinsically disordered region in metazoan Hsp110 chaperones.J. Biol. Chem. 2021; : 100567Abstract Full Text Full Text PDF PubMed Scopus (2) Google Scholar). However, it is puzzling that both these extra segments are dispensable for function (6Shaner L. Trott A. Goeckeler J.L. Brodsky J.L. Morano K.A. The function of the yeast molecular chaperone Sse1 is mechanistically distinct from the closely related hsp70 family.J. Biol. Chem. 2004; 279: 21992-22001Abstract Full Text Full Text PDF PubMed Scopus (74) Google Scholar, 40Liu Q. Hendrickson W.A. Insights into Hsp70 chaperone activity from a crystal structure of the yeast Hsp110 Sse1.Cell. 2007; 131: 106-120Abstract Full Text Full Text PDF PubMed Scopus (190) Google Scholar, 42Oh H.J. Easton D. Murawski M. Kaneko Y. Subjeck J.R. The chaperoning activity of hsp110. Identification of functional domains by use of targeted deletions.J. Biol. Chem. 1999; 274: 15712-15718Abstract Full Text Full Text PDF PubMed Scopus (120) Google Scholar). The biochemical properties and structures of Hsp70s are well studied. For Hsp70s, each functional domain has an essential intrinsic activity (10Bukau B. Weissman J. Horwich A. Molecular chaperones and protein quality control.Cell. 2006; 125: 443-451Abstract Full Text Full Text PDF PubMed Scopus (1171) Google Scholar, 11Mayer M.P. Bukau B. Hsp70 chaperones: Cellular functions and molecular mechanism.Cell Mol. Life Sci. 2005; 62: 670-684Crossref PubMed Scopus (1993) Google Scholar, 13Young J.C. Mechanisms of the Hsp70 chaperone system.Biochem. Cell Biol. 2010; 88: 291-300Crossref PubMed Scopus (144) Google Scholar, 14Liu Q. Liang C. Zhou L. Structural and functional analysis of the Hsp70/Hsp40 chaperone system.Protein Sci. 2020; 29: 378-390Crossref PubMed Scopus (33) Google Scholar, 43Mayer M.P. Gierasch L.M. Recent advances in the structural and mechanistic aspects of Hsp70 molecular chaperones.J. Biol. Chem. 2019; 294: 2085-2097Abstract Full Text Full Text PDF PubMed Scopus (125) Google Scholar, 44Bukau B. Horwich A.L. The Hsp70 and Hsp60 chaperone machines.Cell. 1998; 92: 351-366Abstract Full Text Full Text PDF PubMed Scopus (2397) Google Scholar). The NBD binds ATP or ADP and hydrolyzes bound ATP to ADP, i.e., the NBD has an ATPase activity. The SBD binds hydrophobic segments of polypeptides in extended conformation, normally only found in unfolded proteins. As there is little contact between the two domains in the ADP-bound and nucleotide-free (apo) states, the isolated SBD structures represent these states (45Buchberger A. Theyssen H. Schroder H. McCarty J.S. Virgallita G. Milkereit P. Reinstein J. Bukau B. Nucleotide-induced conformational changes in the ATPase and substrate binding domains of the DnaK chaperone provide evidence for interdomain communication.J. Biol. Chem. 1995; 270: 16903-16910Abstract Full Text Full Text PDF PubMed Scopus (223) Google Scholar, 46Swain J.F. Dinler G. Sivendran R. Montgomery D.L. Stotz M. Gierasch L.M. Hsp70 chaperone ligands control domain association via an allosteric mechanism mediated by the interdomain linker.Mol. Cell. 2007; 26: 27-39Abstract Full Text Full Text PDF PubMed Scopus (246) Google Scholar, 47Bertelsen E.B. Chang L. Gestwicki J.E. Zuiderweg E.R. Solution conformation of wild-type E. coli Hsp70 (DnaK) chaperone complexed with ADP and substrate.Proc. Natl. Acad. Sci. U. S. A. 2009; 106: 8471-8476Crossref PubMed Scopus (342) Google Scholar). In contrast, ATP binding allosterically couples the two functional domains (48Schmid D. Baici A. Gehring H. Christen P. Kinetics of molecular chaperone action.Science. 1994; 263: 971-973Crossref PubMed Scopus (418) Google Scholar, 49Flynn G.C. Chappell T.G. Rothman J.E. Peptide binding and release by proteins implicated as catalysts of protein assembly.Science. 1989; 245: 385-390Crossref PubMed Scopus (572) Google Scholar). This allosteric coupling is crucial for the chaperone activity by ensuring that the energy from ATP hydrolysis is efficiently used for regulating peptide substrate binding (14Liu Q. Liang C. Zhou L. Structural and functional analysis of the Hsp70/Hsp40 chaperone system.Protein Sci. 2020; 29: 378-390Crossref PubMed Scopus (33) Google Scholar, 43Mayer M.P. Gierasch L.M. Recent advances in the structural and mechanistic aspects of Hsp70 molecular chaperones.J. Biol. Chem. 2019; 294: 2085-2097Abstract Full Text Full Text PDF PubMed Scopus (125) Google Scholar, 45Buchberger A. Theyssen H. Schroder H. McCarty J.S. Virgallita G. Milkereit P. Reinstein J. Bukau B. Nucleotide-induced conformational changes in the ATPase and substrate binding domains of the DnaK chaperone provide evidence for interdomain communication.J. Biol. Chem. 1995; 270: 16903-16910Abstract Full Text Full Text PDF PubMed Scopus (223) Google Scholar, 46Swain J.F. Dinler G. Sivendran R. Montgomery D.L. Stotz M. Gierasch L.M. Hsp70 chaperone ligands control domain association via an allosteric mechanism mediated by the interdomain linker.Mol. Cell. 2007; 26: 27-39Abstract Full Text Full Text PDF PubMed Scopus (246) Google Scholar, 48Schmid D. Baici A. Gehring H. Christen P. Kinetics of molecular chaperone action.Science. 1994; 263: 971-973Crossref PubMed Scopus (418) Google Scholar, 49Flynn G.C. Chappell T.G. Rothman J.E. Peptide binding and release by proteins implicated as catalysts of protein assembly.Science. 1989; 245: 385-390Crossref PubMed Scopus (572) Google Scholar, 50Kityk R. Kopp J. Sinning I. Mayer M.P. Structure and dynamics of the ATP-bound open conformation of Hsp70 chaperones.Mol. Cell. 2012; 48: 863-874Abstract Full Text Full Text PDF PubMed Scopus (280) Google Scholar, 51Qi R. Sarbeng E.B. Liu Q. Le K.Q. Xu X. Xu H. Yang J. Wong J.L. Vorvis C. Hendrickson W.A. Zhou L. Allosteric opening of the polypeptide-binding site when an Hsp70 binds ATP.Nat. Struct. Mol. Biol. 2013; 20: 900-907Crossref PubMed Scopus (176) Google Scholar, 52Yang J. Zong Y. Su J. Li H. Zhu H. Columbus L. Zhou L. Liu Q. Conformation transitions of the polypeptide-binding pocket support an active substrate release from Hsp70s.Nat. Commun. 2017; 8: 1201Crossref PubMed Scopus (37) Google Scholar, 53Zhuravleva A. Gierasch L.M. Allosteric signal transmission in the nucleotide-binding domain of 70-kDa heat shock protein (Hsp70) molecular chaperones.Proc. Natl. Acad. Sci. U. S. A. 2011; 108: 6987-6992Crossref PubMed Scopus (115) Google Scholar, 54Alderson T.R. Kim J.H. Markley J.L. Dynamical structures of Hsp70 and Hsp70-Hsp40 complexes.Structure. 2016; 24: 1014-1030Abstract Full Text Full Text PDF PubMed Scopus (64) Google Scholar, 55Gumiero A. Conz C. Gese G.V. Zhang Y. Weyer F.A. Lapouge K. Kappes J. von Plehwe U. Schermann G. Fitzke E. Wolfle T. Fischer T. Rospert S. Sinning I. Interaction of the cotranslational Hsp70 Ssb with ribosomal proteins and rRNA depends on its lid domain.Nat. Commun. 2016; 7: 13563Crossref PubMed Scopus (31) Google Scholar). In contrast, limited biochemical and structural information is available for Hsp110s. Although Hsp110s have the two functional domains such as Hsp70s, it has been enigmatic whether Hsp110s have similar intrinsic activities and allosteric coupling. The ATP binding is essential for the “holdase” activity and NEF activity of Hsp110s (6Shaner L. Trott A. Goeckeler J.L. Brodsky J.L. Morano K.A. The function of the yeast molecular chaperone Sse1 is mechanistically distinct from the closely related hsp70 family.J. Biol. Chem. 2004; 279: 21992-22001Abstract Full Text Full Text PDF PubMed Scopus (74) Google Scholar, 9Yakubu U.M. Morano K.A. Roles of the nucleotide exchange factor and chaperone Hsp110 in cellular proteostasis and diseases of protein misfolding.Biol. Chem. 2018; 399: 1215-1221Crossref PubMed Scopus (12) Google Scholar, 22Andreasson C. Fiaux J. Rampelt H. Mayer M.P. Bukau B. Hsp110 is a nucleotide-activated exchange factor for Hsp70.J. Biol. Chem. 2008; 283: 8877-8884Abstract Full Text Full Text PDF PubMed Scopus (112) Google Scholar, 23Bracher A. Verghese J. The nucleotide exchange factors of Hsp70 molecular chaperones.Front. Mol. Biosci. 2015; 2: 10Crossref PubMed Scopus (126) Google Scholar, 56Polier S. Dragovic Z. Hartl F.U. Bracher A. Structural basis for the cooperation of Hsp70 and Hsp110 chaperones in protein folding.Cell. 2008; 133: 1068-1079Abstract Full Text Full Text PDF PubMed Scopus (199) Google Scholar); however, it has been under debate whether Hsp110s have an active ATPase activity (3Raviol H. Sadlish H. Rodriguez F. Mayer M.P. Bukau B. Chaperone network in the yeast cytosol: Hsp110 is revealed as an Hsp70 nucleotide exchange factor.EMBO J. 2006; 25: 2510-2518Crossref PubMed Scopus (208) Google Scholar, 20Mattoo R.U. Sharma S.K. Priya S. Finka A. Goloubinoff P. Hsp110 is a bona fide chaperone using ATP to unfold stable misfolded polypeptides and reciprocally collaborate with Hsp70 to solubilize protein aggregates.J. Biol. Chem. 2013; 288: 21399-21411Abstract Full Text Full Text PDF PubMed Scopus (108) Google Scholar, 24Shaner L. Wegele H. Buchner J. Morano K.A. The yeast Hsp110 Sse1 functionally interacts with the Hsp70 chaperones Ssa and Ssb.J. Biol. Chem. 2005; 280: 41262-41269Abstract Full Text Full Text PDF PubMed Scopus (81) Google Scholar, 56Polier S. Dragovic Z. Hartl F.U. Bracher A. Structural basis for the cooperation of Hsp70 and Hsp110 chaperones in protein folding.Cell. 2008; 133: 1068-1079Abstract Full Text Full Text PDF PubMed Scopus (199) Google Scholar, 57Yamagishi N. Ishihara K. Hatayama T. Hsp105alpha suppresses Hsc70 chaperone activity by inhibiting Hsc70 ATPase activity.J. Biol. Chem. 2004; 279: 41727-41733Abstract Full Text Full Text PDF PubMed Scopus (47) Google Scholar, 58Xu X. Sarbeng E.B. Vorvis C. Kumar D.P. Zhou L. Liu Q. The unique peptide substrate binding properties of 110 KDA heatshock protein (HSP110) determines its distinct chaperone activity.J. Biol. Chem. 2012; 287: 5661-5672Abstract Full Text Full Text PDF PubMed Scopus (0) Google Scholar, 59Kumar V. Peter J.J. Sagar A. Ray A. Jha M.P. Rebeaud M.E. Tiwari S. Goloubinoff P. Ashish F. Mapa K. Interdomain communication suppressing high intrinsic ATPase activity of Sse1 is essential for its co-disaggregase activity with Ssa1.FEBS J. 2020; 287: 671-694Crossref PubMed Scopus (6) Google Scholar, 60Raviol H. Bukau B. Mayer M.P. Human and yeast Hsp110 chaperones exhibit functional differences.FEBS Lett. 2006; 580: 168-174Crossref PubMed Scopus (56) Google Scholar). For the peptide substrate-binding activity, limited information is available since only a handful of substrates have been identified and analyzed for Hsp110s (41Yakubu U.M. Morano K.A. Suppression of aggregate and amyloid formation by a novel intrinsically disordered region in metazoan Hsp110 chaperones.J. Biol. Chem. 2021; : 100567Abstract Full Text Full Text PDF PubMed Scopus (2) Google Scholar, 61Goeckeler J.L. Petruso A.P. Aguirre J. Clement C.C. Chiosis G. Brodsky J.L. The yeast Hsp110, Sse1p, exhibits high-affinity peptide binding.FEBS Lett. 2008; 582: 2393-2396Crossref PubMed Scopus (46) Google Scholar, 62Manjili M.H. Henderson R. Wang X.Y. Chen X. Li Y. Repasky E. Kazim L. Subjeck J.R. Development of a recombinant HSP110-HER-2/neu vaccine using the chaperoning properties of HSP110.Cancer Res. 2002; 62: 1737-1742PubMed Google Scholar, 63Xu X. Sarbeng E.B. Vorvis C. Kumar D.P. Zhou L. Liu Q. Unique peptide substrate binding properties of 110-kDa heat-shock protein (Hsp110) determine its distinct chaperone activity.J. Biol. Chem. 2012; 287: 5661-5672Abstract Full Text Full Text PDF PubMed Scopus (72) Google Scholar, 64Zuo D. Subjeck J. Wang X.Y. Unfolding the role of large heat shock proteins: New insights and therapeutic implications.Front. Immunol. 2016; 7: 75Crossref PubMed Scopus (63) Google Scholar). More importantly, how the two functional domains are coupled, i.e., the allosteric coup" @default.
- W3194368279 created "2021-08-30" @default.
- W3194368279 creator A5002373354 @default.
- W3194368279 creator A5004199918 @default.
- W3194368279 creator A5004763755 @default.
- W3194368279 creator A5015005766 @default.
- W3194368279 creator A5023438581 @default.
- W3194368279 creator A5055347404 @default.
- W3194368279 creator A5057249150 @default.
- W3194368279 creator A5060025171 @default.
- W3194368279 date "2021-09-01" @default.
- W3194368279 modified "2023-10-18" @default.
- W3194368279 title "Interdomain interactions dictate the function of the Candida albicans Hsp110 protein Msi3" @default.
- W3194368279 cites W1091326218 @default.
- W3194368279 cites W1494494379 @default.
- W3194368279 cites W1930229629 @default.
- W3194368279 cites W1963770237 @default.
- W3194368279 cites W1967522935 @default.
- W3194368279 cites W1967960279 @default.
- W3194368279 cites W1972110853 @default.
- W3194368279 cites W1975252670 @default.
- W3194368279 cites W1975836330 @default.
- W3194368279 cites W1983544779 @default.
- W3194368279 cites W1991569028 @default.
- W3194368279 cites W1996623614 @default.
- W3194368279 cites W1997718936 @default.
- W3194368279 cites W2000534539 @default.
- W3194368279 cites W2013110945 @default.
- W3194368279 cites W2014294043 @default.
- W3194368279 cites W2016396087 @default.
- W3194368279 cites W2022498345 @default.
- W3194368279 cites W2028705478 @default.
- W3194368279 cites W2029265132 @default.
- W3194368279 cites W2031652657 @default.
- W3194368279 cites W2033109626 @default.
- W3194368279 cites W2034943952 @default.
- W3194368279 cites W2036604732 @default.
- W3194368279 cites W2042838776 @default.
- W3194368279 cites W2044546088 @default.
- W3194368279 cites W2045872211 @default.
- W3194368279 cites W2047477750 @default.
- W3194368279 cites W2048350644 @default.
- W3194368279 cites W2050871645 @default.
- W3194368279 cites W2055269320 @default.
- W3194368279 cites W2060864422 @default.
- W3194368279 cites W2064292796 @default.
- W3194368279 cites W2064676619 @default.
- W3194368279 cites W2069717795 @default.
- W3194368279 cites W2070659306 @default.
- W3194368279 cites W2076945013 @default.
- W3194368279 cites W2079572125 @default.
- W3194368279 cites W2079685435 @default.
- W3194368279 cites W2080862490 @default.
- W3194368279 cites W2084198524 @default.
- W3194368279 cites W2085432620 @default.
- W3194368279 cites W2085897097 @default.
- W3194368279 cites W2087654162 @default.
- W3194368279 cites W2087674871 @default.
- W3194368279 cites W2087689873 @default.
- W3194368279 cites W2087895790 @default.
- W3194368279 cites W2089457735 @default.
- W3194368279 cites W2092198909 @default.
- W3194368279 cites W2094271177 @default.
- W3194368279 cites W2096622242 @default.
- W3194368279 cites W2109052254 @default.
- W3194368279 cites W2109936231 @default.
- W3194368279 cites W2113383822 @default.
- W3194368279 cites W2119714298 @default.
- W3194368279 cites W2120396047 @default.
- W3194368279 cites W2125465720 @default.
- W3194368279 cites W2137164780 @default.
- W3194368279 cites W2138070282 @default.
- W3194368279 cites W2151537512 @default.
- W3194368279 cites W2153019640 @default.
- W3194368279 cites W2154290102 @default.
- W3194368279 cites W2157355956 @default.
- W3194368279 cites W2159093521 @default.
- W3194368279 cites W2164018178 @default.
- W3194368279 cites W2180270062 @default.
- W3194368279 cites W2204934950 @default.
- W3194368279 cites W2264948396 @default.
- W3194368279 cites W2308345772 @default.
- W3194368279 cites W2463412817 @default.
- W3194368279 cites W2473711714 @default.
- W3194368279 cites W2549314952 @default.
- W3194368279 cites W2590982773 @default.
- W3194368279 cites W2597221181 @default.
- W3194368279 cites W2618747262 @default.
- W3194368279 cites W2765807058 @default.
- W3194368279 cites W2808925062 @default.
- W3194368279 cites W2892105166 @default.
- W3194368279 cites W2901399587 @default.
- W3194368279 cites W2904223696 @default.
- W3194368279 cites W2944120773 @default.
- W3194368279 cites W2969219516 @default.
- W3194368279 cites W2972462093 @default.
- W3194368279 cites W2988983093 @default.
- W3194368279 cites W2993559724 @default.