Matches in SemOpenAlex for { <https://semopenalex.org/work/W3194387680> ?p ?o ?g. }
- W3194387680 endingPage "4625" @default.
- W3194387680 startingPage "4619" @default.
- W3194387680 abstract "The most communal post-transcriptional modification, N6-methyladenosine (m6A), is associated with a number of crucial biological processes. The precise detection of m6A sites around the genome is critical for revealing its regulatory function and providing new insights into drug design. Although both experimental and computational models for detecting m6A sites have been introduced, but these conventional methods are laborious and expensive. Furthermore, only a handful of these models are capable of detecting m6A sites in various tissues. Therefore, a more generic and optimized computational method for detecting m6A sites in different tissues is required. In this paper, we proposed a universal model using a deep neural network (DNN) and named it TS-m6A-DL, which can classify m6A sites in several tissues of humans (Homo sapiens), mice (Mus musculus), and rats (Rattus norvegicus). To extract RNA sequence features and to convert the input into numerical format for the network, we utilized one-hot-encoding method. The model was tested using fivefold cross-validation and its stability was measured using independent datasets. The proposed model, TS-m6A-DL, achieved accuracies in the range of 75–85% using the fivefold cross-validation method and 72–84% on the independent datasets. Finally, to authenticate the generalization of the model, we performed cross-species testing and proved the generalization ability by achieving state-of-the-art results." @default.
- W3194387680 created "2021-08-30" @default.
- W3194387680 creator A5008953921 @default.
- W3194387680 creator A5017426085 @default.
- W3194387680 creator A5031342322 @default.
- W3194387680 creator A5069825308 @default.
- W3194387680 date "2021-01-01" @default.
- W3194387680 modified "2023-10-14" @default.
- W3194387680 title "TS-m6A-DL: Tissue-specific identification of N6-methyladenosine sites using a universal deep learning model" @default.
- W3194387680 cites W1941339056 @default.
- W3194387680 cites W1987243580 @default.
- W3194387680 cites W1989683090 @default.
- W3194387680 cites W2009308529 @default.
- W3194387680 cites W2021491715 @default.
- W3194387680 cites W2037754272 @default.
- W3194387680 cites W2044676948 @default.
- W3194387680 cites W2065847836 @default.
- W3194387680 cites W2071930821 @default.
- W3194387680 cites W2078964320 @default.
- W3194387680 cites W2096867044 @default.
- W3194387680 cites W2117691694 @default.
- W3194387680 cites W2143701918 @default.
- W3194387680 cites W2156125289 @default.
- W3194387680 cites W2180404227 @default.
- W3194387680 cites W2546967042 @default.
- W3194387680 cites W2891114629 @default.
- W3194387680 cites W2900694973 @default.
- W3194387680 cites W2937997287 @default.
- W3194387680 cites W2951410692 @default.
- W3194387680 cites W2955930197 @default.
- W3194387680 cites W2963614778 @default.
- W3194387680 cites W2973421587 @default.
- W3194387680 cites W2980511028 @default.
- W3194387680 cites W2988273873 @default.
- W3194387680 cites W2989386604 @default.
- W3194387680 cites W3022821485 @default.
- W3194387680 cites W3036278095 @default.
- W3194387680 cites W3046351677 @default.
- W3194387680 cites W3047050823 @default.
- W3194387680 cites W3096581305 @default.
- W3194387680 cites W3115482295 @default.
- W3194387680 cites W3117695338 @default.
- W3194387680 cites W3124952856 @default.
- W3194387680 cites W3133473745 @default.
- W3194387680 cites W3185858302 @default.
- W3194387680 cites W4233030298 @default.
- W3194387680 cites W776567260 @default.
- W3194387680 doi "https://doi.org/10.1016/j.csbj.2021.08.014" @default.
- W3194387680 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8383060" @default.
- W3194387680 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34471503" @default.
- W3194387680 hasPublicationYear "2021" @default.
- W3194387680 type Work @default.
- W3194387680 sameAs 3194387680 @default.
- W3194387680 citedByCount "17" @default.
- W3194387680 countsByYear W31943876802022 @default.
- W3194387680 countsByYear W31943876802023 @default.
- W3194387680 crossrefType "journal-article" @default.
- W3194387680 hasAuthorship W3194387680A5008953921 @default.
- W3194387680 hasAuthorship W3194387680A5017426085 @default.
- W3194387680 hasAuthorship W3194387680A5031342322 @default.
- W3194387680 hasAuthorship W3194387680A5069825308 @default.
- W3194387680 hasBestOaLocation W31943876801 @default.
- W3194387680 hasConcept C108583219 @default.
- W3194387680 hasConcept C116834253 @default.
- W3194387680 hasConcept C119857082 @default.
- W3194387680 hasConcept C134306372 @default.
- W3194387680 hasConcept C14036430 @default.
- W3194387680 hasConcept C144024400 @default.
- W3194387680 hasConcept C153180895 @default.
- W3194387680 hasConcept C154945302 @default.
- W3194387680 hasConcept C177148314 @default.
- W3194387680 hasConcept C186060115 @default.
- W3194387680 hasConcept C19165224 @default.
- W3194387680 hasConcept C2775963939 @default.
- W3194387680 hasConcept C2777938546 @default.
- W3194387680 hasConcept C33288867 @default.
- W3194387680 hasConcept C33923547 @default.
- W3194387680 hasConcept C41008148 @default.
- W3194387680 hasConcept C50644808 @default.
- W3194387680 hasConcept C54355233 @default.
- W3194387680 hasConcept C552990157 @default.
- W3194387680 hasConcept C59822182 @default.
- W3194387680 hasConcept C70721500 @default.
- W3194387680 hasConcept C86803240 @default.
- W3194387680 hasConcept C91965660 @default.
- W3194387680 hasConceptScore W3194387680C108583219 @default.
- W3194387680 hasConceptScore W3194387680C116834253 @default.
- W3194387680 hasConceptScore W3194387680C119857082 @default.
- W3194387680 hasConceptScore W3194387680C134306372 @default.
- W3194387680 hasConceptScore W3194387680C14036430 @default.
- W3194387680 hasConceptScore W3194387680C144024400 @default.
- W3194387680 hasConceptScore W3194387680C153180895 @default.
- W3194387680 hasConceptScore W3194387680C154945302 @default.
- W3194387680 hasConceptScore W3194387680C177148314 @default.
- W3194387680 hasConceptScore W3194387680C186060115 @default.
- W3194387680 hasConceptScore W3194387680C19165224 @default.
- W3194387680 hasConceptScore W3194387680C2775963939 @default.
- W3194387680 hasConceptScore W3194387680C2777938546 @default.