Matches in SemOpenAlex for { <https://semopenalex.org/work/W3194430432> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W3194430432 endingPage "245" @default.
- W3194430432 startingPage "229" @default.
- W3194430432 abstract "Abstract Artificial intelligence is predicted to play a big part in self-learning, industrial automation that will negotiate the bandwidth of structural health and control systems. The industrial structural health and control system based on discrete sensors possesses insufficient spatial coverage of sensing information, while the distributed condition monitoring has been mainly studied at the sensor level, relatively few studies have been conducted at the artificial intelligence level. This paper presents an innovative method for distributed structural health and control systems based on artificial intelligence. The structural condition was divided into regional and local features, the feature extraction and characterization are performed separately. Structural abnormality recognition and risk factor calculation method were proposed by considering the response values and the distribution patterns of both the regional and the local structural behaviours. The test results show that the method can effectively identify the full-scale and local damage of the structure, respectively. Subsequently, structural safety assessment method for long-span structures at kilometres level in view of fully length strain distributions measured by distributed fiber optic sensors were developed. A series of load tests on the long-span structure were carried out. Finite element (FE) model was developed using finite element code, ABAQUS, and an extensive parametric study was conduct to explore the effect of load cases on the structural responses. The differences in the structural response results among load test, structural safety assessment and FE simulation were investigated. It is shown that AI-based self-learning system could offer suitable speed in deployment, reliability in solution and flexibility to adjust in distributed structural health monitoring and control." @default.
- W3194430432 created "2021-08-30" @default.
- W3194430432 creator A5030181618 @default.
- W3194430432 creator A5049356830 @default.
- W3194430432 creator A5086427178 @default.
- W3194430432 creator A5089237967 @default.
- W3194430432 date "2021-08-25" @default.
- W3194430432 modified "2023-10-15" @default.
- W3194430432 title "AI-Based Self-Learning System in Distributed Structural Health Monitoring and Control" @default.
- W3194430432 cites W1992447074 @default.
- W3194430432 cites W2004209041 @default.
- W3194430432 cites W2009684145 @default.
- W3194430432 cites W2011972049 @default.
- W3194430432 cites W2017396732 @default.
- W3194430432 cites W2021931079 @default.
- W3194430432 cites W2041989633 @default.
- W3194430432 cites W2057078962 @default.
- W3194430432 cites W2064626080 @default.
- W3194430432 cites W2085014929 @default.
- W3194430432 cites W2108917711 @default.
- W3194430432 cites W2113155417 @default.
- W3194430432 cites W2128250175 @default.
- W3194430432 cites W2148149012 @default.
- W3194430432 cites W2154947782 @default.
- W3194430432 cites W2518722439 @default.
- W3194430432 cites W2562757483 @default.
- W3194430432 cites W2625053975 @default.
- W3194430432 cites W2755769047 @default.
- W3194430432 cites W2808734708 @default.
- W3194430432 cites W2896301445 @default.
- W3194430432 cites W2982158488 @default.
- W3194430432 cites W2988158872 @default.
- W3194430432 cites W587360598 @default.
- W3194430432 doi "https://doi.org/10.1007/s11063-021-10571-1" @default.
- W3194430432 hasPublicationYear "2021" @default.
- W3194430432 type Work @default.
- W3194430432 sameAs 3194430432 @default.
- W3194430432 citedByCount "0" @default.
- W3194430432 crossrefType "journal-article" @default.
- W3194430432 hasAuthorship W3194430432A5030181618 @default.
- W3194430432 hasAuthorship W3194430432A5049356830 @default.
- W3194430432 hasAuthorship W3194430432A5086427178 @default.
- W3194430432 hasAuthorship W3194430432A5089237967 @default.
- W3194430432 hasBestOaLocation W31944304321 @default.
- W3194430432 hasConcept C105795698 @default.
- W3194430432 hasConcept C117251300 @default.
- W3194430432 hasConcept C127413603 @default.
- W3194430432 hasConcept C135628077 @default.
- W3194430432 hasConcept C154945302 @default.
- W3194430432 hasConcept C200601418 @default.
- W3194430432 hasConcept C2776247918 @default.
- W3194430432 hasConcept C33923547 @default.
- W3194430432 hasConcept C41008148 @default.
- W3194430432 hasConcept C66938386 @default.
- W3194430432 hasConcept C88282795 @default.
- W3194430432 hasConceptScore W3194430432C105795698 @default.
- W3194430432 hasConceptScore W3194430432C117251300 @default.
- W3194430432 hasConceptScore W3194430432C127413603 @default.
- W3194430432 hasConceptScore W3194430432C135628077 @default.
- W3194430432 hasConceptScore W3194430432C154945302 @default.
- W3194430432 hasConceptScore W3194430432C200601418 @default.
- W3194430432 hasConceptScore W3194430432C2776247918 @default.
- W3194430432 hasConceptScore W3194430432C33923547 @default.
- W3194430432 hasConceptScore W3194430432C41008148 @default.
- W3194430432 hasConceptScore W3194430432C66938386 @default.
- W3194430432 hasConceptScore W3194430432C88282795 @default.
- W3194430432 hasIssue "1" @default.
- W3194430432 hasLocation W31944304321 @default.
- W3194430432 hasOpenAccess W3194430432 @default.
- W3194430432 hasPrimaryLocation W31944304321 @default.
- W3194430432 hasRelatedWork W1974551609 @default.
- W3194430432 hasRelatedWork W1974999200 @default.
- W3194430432 hasRelatedWork W2012663806 @default.
- W3194430432 hasRelatedWork W2351529547 @default.
- W3194430432 hasRelatedWork W2354725171 @default.
- W3194430432 hasRelatedWork W2356445556 @default.
- W3194430432 hasRelatedWork W2357425347 @default.
- W3194430432 hasRelatedWork W2911330470 @default.
- W3194430432 hasRelatedWork W3048689406 @default.
- W3194430432 hasRelatedWork W4252280416 @default.
- W3194430432 hasVolume "55" @default.
- W3194430432 isParatext "false" @default.
- W3194430432 isRetracted "false" @default.
- W3194430432 magId "3194430432" @default.
- W3194430432 workType "article" @default.