Matches in SemOpenAlex for { <https://semopenalex.org/work/W3194453670> ?p ?o ?g. }
- W3194453670 abstract "Background: Predicting the perioperative requirement for red blood cells (RBCs) transfusion in patients with the pelvic fracture may be challenging. In this study, we constructed a perioperative RBCs transfusion predictive model (ternary classifications) based on a machine learning algorithm. Materials and Methods: This study included perioperative adult patients with pelvic trauma hospitalized across six Chinese centers between September 2012 and June 2019. An extreme gradient boosting (XGBoost) algorithm was used to predict the need for perioperative RBCs transfusion, with data being split into training test (80%), which was subjected to 5-fold cross-validation, and test set (20%). The ability of the predictive transfusion model was compared with blood preparation based on surgeons' experience and other predictive models, including random forest, gradient boosting decision tree, K-nearest neighbor, logistic regression, and Gaussian naïve Bayes classifier models. Data of 33 patients from one of the hospitals were prospectively collected for model validation. Results: Among 510 patients, 192 (37.65%) have not received any perioperative RBCs transfusion, 127 (24.90%) received less-transfusion (RBCs < 4U), and 191 (37.45%) received more-transfusion (RBCs ≥ 4U). Machine learning-based transfusion predictive model produced the best performance with the accuracy of 83.34%, and Kappa coefficient of 0.7967 compared with other methods (blood preparation based on surgeons' experience with the accuracy of 65.94%, and Kappa coefficient of 0.5704; the random forest method with an accuracy of 82.35%, and Kappa coefficient of 0.7858; the gradient boosting decision tree with an accuracy of 79.41%, and Kappa coefficient of 0.7742; the K-nearest neighbor with an accuracy of 53.92%, and Kappa coefficient of 0.3341). In the prospective dataset, it also had a food performance with accuracy 81.82%. Conclusion: This multicenter retrospective cohort study described the construction of an accurate model that could predict perioperative RBCs transfusion in patients with pelvic fractures." @default.
- W3194453670 created "2021-08-30" @default.
- W3194453670 creator A5007659827 @default.
- W3194453670 creator A5008932652 @default.
- W3194453670 creator A5010630605 @default.
- W3194453670 creator A5020614289 @default.
- W3194453670 creator A5031222609 @default.
- W3194453670 creator A5051726918 @default.
- W3194453670 creator A5065999911 @default.
- W3194453670 creator A5091892657 @default.
- W3194453670 date "2021-08-16" @default.
- W3194453670 modified "2023-10-12" @default.
- W3194453670 title "Ability of a Machine Learning Algorithm to Predict the Need for Perioperative Red Blood Cells Transfusion in Pelvic Fracture Patients: A Multicenter Cohort Study in China" @default.
- W3194453670 cites W1678356000 @default.
- W3194453670 cites W1802414862 @default.
- W3194453670 cites W1901616594 @default.
- W3194453670 cites W2002664358 @default.
- W3194453670 cites W2007320066 @default.
- W3194453670 cites W2016771235 @default.
- W3194453670 cites W2027561524 @default.
- W3194453670 cites W2051270876 @default.
- W3194453670 cites W2058693112 @default.
- W3194453670 cites W2060219325 @default.
- W3194453670 cites W2069388901 @default.
- W3194453670 cites W2095413188 @default.
- W3194453670 cites W2096876696 @default.
- W3194453670 cites W2104181853 @default.
- W3194453670 cites W2119361626 @default.
- W3194453670 cites W2162586165 @default.
- W3194453670 cites W2196504169 @default.
- W3194453670 cites W2530641835 @default.
- W3194453670 cites W2601895996 @default.
- W3194453670 cites W2606665849 @default.
- W3194453670 cites W2765602466 @default.
- W3194453670 cites W2792919287 @default.
- W3194453670 cites W2808779485 @default.
- W3194453670 cites W2913533249 @default.
- W3194453670 cites W2917017104 @default.
- W3194453670 cites W2948818065 @default.
- W3194453670 cites W2949232264 @default.
- W3194453670 cites W2949649334 @default.
- W3194453670 cites W2953959218 @default.
- W3194453670 cites W2959123242 @default.
- W3194453670 cites W2970340465 @default.
- W3194453670 cites W2996991292 @default.
- W3194453670 cites W3003401083 @default.
- W3194453670 cites W3010521003 @default.
- W3194453670 cites W3013498854 @default.
- W3194453670 cites W3094805575 @default.
- W3194453670 cites W3102476541 @default.
- W3194453670 cites W3119248677 @default.
- W3194453670 cites W3131086858 @default.
- W3194453670 cites W3132291851 @default.
- W3194453670 cites W3132837218 @default.
- W3194453670 cites W3142741419 @default.
- W3194453670 cites W3170322526 @default.
- W3194453670 cites W3179495764 @default.
- W3194453670 cites W4230532060 @default.
- W3194453670 cites W4245151342 @default.
- W3194453670 doi "https://doi.org/10.3389/fmed.2021.694733" @default.
- W3194453670 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8415266" @default.
- W3194453670 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34485333" @default.
- W3194453670 hasPublicationYear "2021" @default.
- W3194453670 type Work @default.
- W3194453670 sameAs 3194453670 @default.
- W3194453670 citedByCount "7" @default.
- W3194453670 countsByYear W31944536702021 @default.
- W3194453670 countsByYear W31944536702022 @default.
- W3194453670 countsByYear W31944536702023 @default.
- W3194453670 crossrefType "journal-article" @default.
- W3194453670 hasAuthorship W3194453670A5007659827 @default.
- W3194453670 hasAuthorship W3194453670A5008932652 @default.
- W3194453670 hasAuthorship W3194453670A5010630605 @default.
- W3194453670 hasAuthorship W3194453670A5020614289 @default.
- W3194453670 hasAuthorship W3194453670A5031222609 @default.
- W3194453670 hasAuthorship W3194453670A5051726918 @default.
- W3194453670 hasAuthorship W3194453670A5065999911 @default.
- W3194453670 hasAuthorship W3194453670A5091892657 @default.
- W3194453670 hasBestOaLocation W31944536701 @default.
- W3194453670 hasConcept C11413529 @default.
- W3194453670 hasConcept C119857082 @default.
- W3194453670 hasConcept C12267149 @default.
- W3194453670 hasConcept C126322002 @default.
- W3194453670 hasConcept C141071460 @default.
- W3194453670 hasConcept C151956035 @default.
- W3194453670 hasConcept C154945302 @default.
- W3194453670 hasConcept C169258074 @default.
- W3194453670 hasConcept C2780014101 @default.
- W3194453670 hasConcept C31174226 @default.
- W3194453670 hasConcept C41008148 @default.
- W3194453670 hasConcept C52001869 @default.
- W3194453670 hasConcept C70153297 @default.
- W3194453670 hasConcept C71924100 @default.
- W3194453670 hasConcept C84525736 @default.
- W3194453670 hasConceptScore W3194453670C11413529 @default.
- W3194453670 hasConceptScore W3194453670C119857082 @default.
- W3194453670 hasConceptScore W3194453670C12267149 @default.
- W3194453670 hasConceptScore W3194453670C126322002 @default.
- W3194453670 hasConceptScore W3194453670C141071460 @default.
- W3194453670 hasConceptScore W3194453670C151956035 @default.