Matches in SemOpenAlex for { <https://semopenalex.org/work/W3194505087> ?p ?o ?g. }
- W3194505087 endingPage "3555" @default.
- W3194505087 startingPage "3548" @default.
- W3194505087 abstract "Endoscopic ultrasound (EUS) is the most accurate diagnostic modality for polypoid lesions of the gallbladder (GB), but is limited by subjective interpretation. Deep learning-based artificial intelligence (AI) algorithms are under development. We evaluated the diagnostic performance of AI in differentiating polypoid lesions using EUS images.The diagnostic performance of the EUS-AI system with ResNet50 architecture was evaluated via three processes: training, internal validation, and testing using an AI development cohort of 1039 EUS images (836 GB polyps and 203 gallstones). The diagnostic performance was verified using an external validation cohort of 83 patients and compared with the performance of EUS endoscopists.In the AI development cohort, we developed an EUS-AI algorithm and evaluated the diagnostic performance of the EUS-AI including sensitivity, specificity, positive predictive value, negative predictive value, and accuracy. For the differential diagnosis of neoplastic and non-neoplastic GB polyps, these values for EUS-AI were 57.9%, 96.5%, 77.8%, 91.6%, and 89.8%, respectively. In the external validation cohort, we compared diagnostic performances between EUS-AI and endoscopists. For the differential diagnosis of neoplastic and non-neoplastic GB polyps, the sensitivity and specificity were 33.3% and 96.1% for EUS-AI; they were 74.2% and 44.9%, respectively, for the endoscopists. Besides, the accuracy of the EUS-AI was between the accuracies of mid-level (66.7%) and expert EUS endoscopists (77.5%).This newly developed EUS-AI system showed favorable performance for the diagnosis of neoplastic GB polyps, with a performance comparable to that of EUS endoscopists." @default.
- W3194505087 created "2021-08-30" @default.
- W3194505087 creator A5003699166 @default.
- W3194505087 creator A5022753022 @default.
- W3194505087 creator A5025219406 @default.
- W3194505087 creator A5025257613 @default.
- W3194505087 creator A5043678761 @default.
- W3194505087 creator A5050205201 @default.
- W3194505087 creator A5052632851 @default.
- W3194505087 creator A5073765158 @default.
- W3194505087 creator A5075059518 @default.
- W3194505087 date "2021-08-31" @default.
- W3194505087 modified "2023-10-03" @default.
- W3194505087 title "Diagnostic performance of endoscopic ultrasound‐artificial intelligence using deep learning analysis of gallbladder polypoid lesions" @default.
- W3194505087 cites W1970050273 @default.
- W3194505087 cites W1981536869 @default.
- W3194505087 cites W1986950729 @default.
- W3194505087 cites W1998374259 @default.
- W3194505087 cites W2022270317 @default.
- W3194505087 cites W2050348056 @default.
- W3194505087 cites W2061898238 @default.
- W3194505087 cites W2074146810 @default.
- W3194505087 cites W2083345770 @default.
- W3194505087 cites W2127760440 @default.
- W3194505087 cites W2137631556 @default.
- W3194505087 cites W2157647765 @default.
- W3194505087 cites W2194775991 @default.
- W3194505087 cites W2234601161 @default.
- W3194505087 cites W2295107390 @default.
- W3194505087 cites W2319765162 @default.
- W3194505087 cites W2557738935 @default.
- W3194505087 cites W2581082771 @default.
- W3194505087 cites W2586547119 @default.
- W3194505087 cites W2772246530 @default.
- W3194505087 cites W2772535620 @default.
- W3194505087 cites W2772723798 @default.
- W3194505087 cites W2776737272 @default.
- W3194505087 cites W2808887143 @default.
- W3194505087 cites W2890665624 @default.
- W3194505087 cites W2898544046 @default.
- W3194505087 cites W2919115771 @default.
- W3194505087 cites W2921535297 @default.
- W3194505087 cites W2945284524 @default.
- W3194505087 cites W2950952672 @default.
- W3194505087 cites W2962858109 @default.
- W3194505087 cites W2973180530 @default.
- W3194505087 cites W3005985118 @default.
- W3194505087 cites W3013146603 @default.
- W3194505087 cites W3022465648 @default.
- W3194505087 cites W3085806799 @default.
- W3194505087 doi "https://doi.org/10.1111/jgh.15673" @default.
- W3194505087 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34431545" @default.
- W3194505087 hasPublicationYear "2021" @default.
- W3194505087 type Work @default.
- W3194505087 sameAs 3194505087 @default.
- W3194505087 citedByCount "13" @default.
- W3194505087 countsByYear W31945050872021 @default.
- W3194505087 countsByYear W31945050872022 @default.
- W3194505087 countsByYear W31945050872023 @default.
- W3194505087 crossrefType "journal-article" @default.
- W3194505087 hasAuthorship W3194505087A5003699166 @default.
- W3194505087 hasAuthorship W3194505087A5022753022 @default.
- W3194505087 hasAuthorship W3194505087A5025219406 @default.
- W3194505087 hasAuthorship W3194505087A5025257613 @default.
- W3194505087 hasAuthorship W3194505087A5043678761 @default.
- W3194505087 hasAuthorship W3194505087A5050205201 @default.
- W3194505087 hasAuthorship W3194505087A5052632851 @default.
- W3194505087 hasAuthorship W3194505087A5073765158 @default.
- W3194505087 hasAuthorship W3194505087A5075059518 @default.
- W3194505087 hasConcept C126322002 @default.
- W3194505087 hasConcept C126838900 @default.
- W3194505087 hasConcept C142724271 @default.
- W3194505087 hasConcept C154945302 @default.
- W3194505087 hasConcept C2777148285 @default.
- W3194505087 hasConcept C2778451229 @default.
- W3194505087 hasConcept C2779388726 @default.
- W3194505087 hasConcept C2780390042 @default.
- W3194505087 hasConcept C2780801072 @default.
- W3194505087 hasConcept C3020132585 @default.
- W3194505087 hasConcept C41008148 @default.
- W3194505087 hasConcept C71924100 @default.
- W3194505087 hasConcept C72563966 @default.
- W3194505087 hasConceptScore W3194505087C126322002 @default.
- W3194505087 hasConceptScore W3194505087C126838900 @default.
- W3194505087 hasConceptScore W3194505087C142724271 @default.
- W3194505087 hasConceptScore W3194505087C154945302 @default.
- W3194505087 hasConceptScore W3194505087C2777148285 @default.
- W3194505087 hasConceptScore W3194505087C2778451229 @default.
- W3194505087 hasConceptScore W3194505087C2779388726 @default.
- W3194505087 hasConceptScore W3194505087C2780390042 @default.
- W3194505087 hasConceptScore W3194505087C2780801072 @default.
- W3194505087 hasConceptScore W3194505087C3020132585 @default.
- W3194505087 hasConceptScore W3194505087C41008148 @default.
- W3194505087 hasConceptScore W3194505087C71924100 @default.
- W3194505087 hasConceptScore W3194505087C72563966 @default.
- W3194505087 hasFunder F4320323639 @default.
- W3194505087 hasFunder F4320335295 @default.
- W3194505087 hasIssue "12" @default.