Matches in SemOpenAlex for { <https://semopenalex.org/work/W3194693179> ?p ?o ?g. }
Showing items 1 to 78 of
78
with 100 items per page.
- W3194693179 abstract "The non-uniform surface temperature distribution of rotating active stars is routinely mapped with the Doppler Imaging technique. Inhomogeneities in the surface produce features in high-resolution spectroscopic observations that shift in wavelength depending on their position on the visible hemisphere. The inversion problem has been systematically solved using maximum a-posteriori regularized methods assuming smoothness or maximum entropy. Our aim in this work is to solve the full Bayesian inference problem, by providing access to the posterior distribution of the surface temperature in the star. We use amortized neural posterior estimation to produce a model that approximates the high-dimensional posterior distribution for spectroscopic observations of selected spectral ranges sampled at arbitrary rotation phases. The posterior distribution is approximated with conditional normalizing flows, which are flexible, tractable and easy to sample approximations to arbitrary distributions. When conditioned on the spectroscopic observations, they provide a very efficient way of obtaining samples from the posterior distribution. The conditioning on observations is obtained through the use of Transformer encoders, which can deal with arbitrary wavelength sampling and rotation phases. Our model can produce thousands of posterior samples per second. Our validation of the model for very high signal-to-noise observations shows that it correctly approximates the posterior, although with some overestimation of the broadening. We apply the model to the moderately fast rotator II Peg, producing the first Bayesian map of its temperature inhomogenities. We conclude that conditional normalizing flows are a very promising tool to carry out approximate Bayesian inference in more complex problems in stellar physics, like constraining the magnetic properties." @default.
- W3194693179 created "2021-08-30" @default.
- W3194693179 creator A5026245103 @default.
- W3194693179 creator A5031067068 @default.
- W3194693179 creator A5053220962 @default.
- W3194693179 date "2021-08-20" @default.
- W3194693179 modified "2023-10-16" @default.
- W3194693179 title "Approximate Bayesian Neural Doppler Imaging" @default.
- W3194693179 cites W1536570457 @default.
- W3194693179 cites W2140918099 @default.
- W3194693179 cites W3173531806 @default.
- W3194693179 hasPublicationYear "2021" @default.
- W3194693179 type Work @default.
- W3194693179 sameAs 3194693179 @default.
- W3194693179 citedByCount "0" @default.
- W3194693179 crossrefType "posted-content" @default.
- W3194693179 hasAuthorship W3194693179A5026245103 @default.
- W3194693179 hasAuthorship W3194693179A5031067068 @default.
- W3194693179 hasAuthorship W3194693179A5053220962 @default.
- W3194693179 hasConcept C105795698 @default.
- W3194693179 hasConcept C107673813 @default.
- W3194693179 hasConcept C11413529 @default.
- W3194693179 hasConcept C121332964 @default.
- W3194693179 hasConcept C134306372 @default.
- W3194693179 hasConcept C135252773 @default.
- W3194693179 hasConcept C154945302 @default.
- W3194693179 hasConcept C160234255 @default.
- W3194693179 hasConcept C177769412 @default.
- W3194693179 hasConcept C191413810 @default.
- W3194693179 hasConcept C33923547 @default.
- W3194693179 hasConcept C41008148 @default.
- W3194693179 hasConcept C49781872 @default.
- W3194693179 hasConcept C57830394 @default.
- W3194693179 hasConcept C9679016 @default.
- W3194693179 hasConcept C9810830 @default.
- W3194693179 hasConceptScore W3194693179C105795698 @default.
- W3194693179 hasConceptScore W3194693179C107673813 @default.
- W3194693179 hasConceptScore W3194693179C11413529 @default.
- W3194693179 hasConceptScore W3194693179C121332964 @default.
- W3194693179 hasConceptScore W3194693179C134306372 @default.
- W3194693179 hasConceptScore W3194693179C135252773 @default.
- W3194693179 hasConceptScore W3194693179C154945302 @default.
- W3194693179 hasConceptScore W3194693179C160234255 @default.
- W3194693179 hasConceptScore W3194693179C177769412 @default.
- W3194693179 hasConceptScore W3194693179C191413810 @default.
- W3194693179 hasConceptScore W3194693179C33923547 @default.
- W3194693179 hasConceptScore W3194693179C41008148 @default.
- W3194693179 hasConceptScore W3194693179C49781872 @default.
- W3194693179 hasConceptScore W3194693179C57830394 @default.
- W3194693179 hasConceptScore W3194693179C9679016 @default.
- W3194693179 hasConceptScore W3194693179C9810830 @default.
- W3194693179 hasLocation W31946931791 @default.
- W3194693179 hasOpenAccess W3194693179 @default.
- W3194693179 hasPrimaryLocation W31946931791 @default.
- W3194693179 hasRelatedWork W1826613244 @default.
- W3194693179 hasRelatedWork W1981695351 @default.
- W3194693179 hasRelatedWork W1992581896 @default.
- W3194693179 hasRelatedWork W1994987977 @default.
- W3194693179 hasRelatedWork W2024281591 @default.
- W3194693179 hasRelatedWork W2047231387 @default.
- W3194693179 hasRelatedWork W2062137137 @default.
- W3194693179 hasRelatedWork W2067522329 @default.
- W3194693179 hasRelatedWork W2082067697 @default.
- W3194693179 hasRelatedWork W2171099458 @default.
- W3194693179 hasRelatedWork W2229633322 @default.
- W3194693179 hasRelatedWork W2511978416 @default.
- W3194693179 hasRelatedWork W2810981661 @default.
- W3194693179 hasRelatedWork W2922700704 @default.
- W3194693179 hasRelatedWork W3014522476 @default.
- W3194693179 hasRelatedWork W3030419442 @default.
- W3194693179 hasRelatedWork W3100196865 @default.
- W3194693179 hasRelatedWork W3154674645 @default.
- W3194693179 hasRelatedWork W3188627910 @default.
- W3194693179 hasRelatedWork W3177938368 @default.
- W3194693179 isParatext "false" @default.
- W3194693179 isRetracted "false" @default.
- W3194693179 magId "3194693179" @default.
- W3194693179 workType "article" @default.