Matches in SemOpenAlex for { <https://semopenalex.org/work/W3194706446> ?p ?o ?g. }
- W3194706446 endingPage "13" @default.
- W3194706446 startingPage "1" @default.
- W3194706446 abstract "Enhancement of hyperspectral image (HSI) resolution is significant for better application in practice. In this article, a dual U-Net (D-UNet) is proposed to improve the spatial resolution of HSI. The whole network contains two parts. One is the detail extraction network, whose network architecture is encoder–decoder and mainly extracts various spatial features from multispectral images (MSIs). Another is the spatio-spectral fusion network (SSFN), which aims at injecting the features from the detail extraction network into HSI for better reconstruction. Furthermore, in the primary stage of the whole network, a novel multiscale spatio-spectral attention module (MSSAM) is utilized to pay more attention to important features at different scales. Considering the complex ground scenes, the features of different scale and depth are continually extracted and fused in the whole network. The experimental results show that the proposed method is more effective compared with the state-of-the-art methods." @default.
- W3194706446 created "2021-08-30" @default.
- W3194706446 creator A5047576305 @default.
- W3194706446 creator A5066135984 @default.
- W3194706446 creator A5089465602 @default.
- W3194706446 creator A5089746325 @default.
- W3194706446 date "2022-01-01" @default.
- W3194706446 modified "2023-10-17" @default.
- W3194706446 title "A Dual-UNet With Multistage Details Injection for Hyperspectral Image Fusion" @default.
- W3194706446 cites W1916874600 @default.
- W3194706446 cites W1970836680 @default.
- W3194706446 cites W1990231296 @default.
- W3194706446 cites W2021046129 @default.
- W3194706446 cites W2025466678 @default.
- W3194706446 cites W2078855750 @default.
- W3194706446 cites W2112693869 @default.
- W3194706446 cites W2133665775 @default.
- W3194706446 cites W2177296861 @default.
- W3194706446 cites W2462592242 @default.
- W3194706446 cites W2592312604 @default.
- W3194706446 cites W2625894731 @default.
- W3194706446 cites W2792111852 @default.
- W3194706446 cites W2792862011 @default.
- W3194706446 cites W2794048225 @default.
- W3194706446 cites W2804744787 @default.
- W3194706446 cites W2898234583 @default.
- W3194706446 cites W2944395072 @default.
- W3194706446 cites W2946747211 @default.
- W3194706446 cites W2949343319 @default.
- W3194706446 cites W2963183385 @default.
- W3194706446 cites W2963284277 @default.
- W3194706446 cites W2964119165 @default.
- W3194706446 cites W2964275574 @default.
- W3194706446 cites W2969200668 @default.
- W3194706446 cites W2982671374 @default.
- W3194706446 cites W2985868110 @default.
- W3194706446 cites W2987315422 @default.
- W3194706446 cites W2997011911 @default.
- W3194706446 cites W3003727719 @default.
- W3194706446 cites W3008202438 @default.
- W3194706446 cites W3014514331 @default.
- W3194706446 cites W3022346097 @default.
- W3194706446 cites W3083606623 @default.
- W3194706446 cites W3093730405 @default.
- W3194706446 cites W3095567726 @default.
- W3194706446 cites W3099843321 @default.
- W3194706446 cites W3120331810 @default.
- W3194706446 cites W3133046277 @default.
- W3194706446 doi "https://doi.org/10.1109/tgrs.2021.3101848" @default.
- W3194706446 hasPublicationYear "2022" @default.
- W3194706446 type Work @default.
- W3194706446 sameAs 3194706446 @default.
- W3194706446 citedByCount "11" @default.
- W3194706446 countsByYear W31947064462021 @default.
- W3194706446 countsByYear W31947064462022 @default.
- W3194706446 countsByYear W31947064462023 @default.
- W3194706446 crossrefType "journal-article" @default.
- W3194706446 hasAuthorship W3194706446A5047576305 @default.
- W3194706446 hasAuthorship W3194706446A5066135984 @default.
- W3194706446 hasAuthorship W3194706446A5089465602 @default.
- W3194706446 hasAuthorship W3194706446A5089746325 @default.
- W3194706446 hasConcept C115961682 @default.
- W3194706446 hasConcept C124952713 @default.
- W3194706446 hasConcept C127313418 @default.
- W3194706446 hasConcept C142362112 @default.
- W3194706446 hasConcept C153180895 @default.
- W3194706446 hasConcept C154945302 @default.
- W3194706446 hasConcept C159078339 @default.
- W3194706446 hasConcept C173163844 @default.
- W3194706446 hasConcept C205372480 @default.
- W3194706446 hasConcept C2780980858 @default.
- W3194706446 hasConcept C31972630 @default.
- W3194706446 hasConcept C41008148 @default.
- W3194706446 hasConcept C52622490 @default.
- W3194706446 hasConcept C62649853 @default.
- W3194706446 hasConcept C69744172 @default.
- W3194706446 hasConceptScore W3194706446C115961682 @default.
- W3194706446 hasConceptScore W3194706446C124952713 @default.
- W3194706446 hasConceptScore W3194706446C127313418 @default.
- W3194706446 hasConceptScore W3194706446C142362112 @default.
- W3194706446 hasConceptScore W3194706446C153180895 @default.
- W3194706446 hasConceptScore W3194706446C154945302 @default.
- W3194706446 hasConceptScore W3194706446C159078339 @default.
- W3194706446 hasConceptScore W3194706446C173163844 @default.
- W3194706446 hasConceptScore W3194706446C205372480 @default.
- W3194706446 hasConceptScore W3194706446C2780980858 @default.
- W3194706446 hasConceptScore W3194706446C31972630 @default.
- W3194706446 hasConceptScore W3194706446C41008148 @default.
- W3194706446 hasConceptScore W3194706446C52622490 @default.
- W3194706446 hasConceptScore W3194706446C62649853 @default.
- W3194706446 hasConceptScore W3194706446C69744172 @default.
- W3194706446 hasFunder F4320321001 @default.
- W3194706446 hasFunder F4320322186 @default.
- W3194706446 hasLocation W31947064461 @default.
- W3194706446 hasOpenAccess W3194706446 @default.
- W3194706446 hasPrimaryLocation W31947064461 @default.
- W3194706446 hasRelatedWork W1990800631 @default.
- W3194706446 hasRelatedWork W2018850895 @default.