Matches in SemOpenAlex for { <https://semopenalex.org/work/W3194768393> ?p ?o ?g. }
- W3194768393 endingPage "119844" @default.
- W3194768393 startingPage "119830" @default.
- W3194768393 abstract "A millimeter-wave (mmW) classifier system applied to images synthesized from a coded-aperture based computational imaging (CI) radar is presented. A developed physical model of a CI system is used to generate the image dataset for the classification algorithm. A convolutional neural network (CNN) is integrated with the physical model and trained using the dataset comprising of synthesized mmW images obtained directly from the developed CI physical model. A k-fold cross validation technique is applied during the training process to validate the classification model. The coded-aperture CI concept enables image reconstruction from a significantly reduced number of back-scattered measurements by facilitating physical layer compression. This physical layer compression can substantially simplify the data acquisition layer of imaging radars, which is realized using only two channels in this article. The integration of the classification algorithm with the CI numerical model is particularly important in enabling the training step to be carried out using relevant system metrics and without the necessity for experimental data. Leveraging the CI numerical model generated data, training step for the classification algorithm is achieved in real-time while also confirming that the numerically trained CI classifier offers high accuracy with both simulated and experimental data. The classifier integrated physical model also enables performance analysis of the classification algorithm to be carried out as a function of key system metrics such as signal-to-noise (SNR) level, ensuring a complete understanding of the classification accuracy under different operating conditions. The trained CI system is tested with synthesized mmW images from the physical model and a classification accuracy of 89% is achieved. The proposed model is also verified using experimental data validating the fidelity of the developed CI integrated classifier system. A classification latency of 3.8 ms per frame is achieved, paving the way for real-time automated threat detection (ATD) for security-screening applications." @default.
- W3194768393 created "2021-08-30" @default.
- W3194768393 creator A5001206618 @default.
- W3194768393 creator A5006524000 @default.
- W3194768393 creator A5007409511 @default.
- W3194768393 creator A5043601489 @default.
- W3194768393 creator A5053763715 @default.
- W3194768393 creator A5054300851 @default.
- W3194768393 creator A5054437207 @default.
- W3194768393 creator A5059640494 @default.
- W3194768393 creator A5080844107 @default.
- W3194768393 date "2021-01-01" @default.
- W3194768393 modified "2023-09-29" @default.
- W3194768393 title "Coded-Aperture Computational Millimeter-Wave Image Classifier Using Convolutional Neural Network" @default.
- W3194768393 cites W1677182931 @default.
- W3194768393 cites W1965768901 @default.
- W3194768393 cites W1974095267 @default.
- W3194768393 cites W1978847959 @default.
- W3194768393 cites W2005222981 @default.
- W3194768393 cites W2021409570 @default.
- W3194768393 cites W2034714646 @default.
- W3194768393 cites W2035682670 @default.
- W3194768393 cites W2062131753 @default.
- W3194768393 cites W2073950632 @default.
- W3194768393 cites W2080379861 @default.
- W3194768393 cites W2091721293 @default.
- W3194768393 cites W2102151171 @default.
- W3194768393 cites W2137662920 @default.
- W3194768393 cites W2143314306 @default.
- W3194768393 cites W2155684415 @default.
- W3194768393 cites W2164598857 @default.
- W3194768393 cites W2170000506 @default.
- W3194768393 cites W2180703727 @default.
- W3194768393 cites W2296376926 @default.
- W3194768393 cites W2326824134 @default.
- W3194768393 cites W2337983450 @default.
- W3194768393 cites W2339438151 @default.
- W3194768393 cites W2339593441 @default.
- W3194768393 cites W2410591237 @default.
- W3194768393 cites W2476970598 @default.
- W3194768393 cites W2513488761 @default.
- W3194768393 cites W2525286916 @default.
- W3194768393 cites W2558948616 @default.
- W3194768393 cites W2590841683 @default.
- W3194768393 cites W2591203436 @default.
- W3194768393 cites W2622102053 @default.
- W3194768393 cites W2738988935 @default.
- W3194768393 cites W2769877289 @default.
- W3194768393 cites W2786768646 @default.
- W3194768393 cites W2800716714 @default.
- W3194768393 cites W2804971607 @default.
- W3194768393 cites W2809566440 @default.
- W3194768393 cites W2883102611 @default.
- W3194768393 cites W2885450649 @default.
- W3194768393 cites W2895357123 @default.
- W3194768393 cites W2917513897 @default.
- W3194768393 cites W2920546535 @default.
- W3194768393 cites W2945129896 @default.
- W3194768393 cites W2966505297 @default.
- W3194768393 cites W2969443669 @default.
- W3194768393 cites W2973146207 @default.
- W3194768393 cites W3006457763 @default.
- W3194768393 cites W3017141509 @default.
- W3194768393 cites W3022656382 @default.
- W3194768393 cites W3025999040 @default.
- W3194768393 cites W3031400654 @default.
- W3194768393 cites W3036255020 @default.
- W3194768393 cites W3036320983 @default.
- W3194768393 cites W3080488084 @default.
- W3194768393 cites W3082942064 @default.
- W3194768393 cites W3103220402 @default.
- W3194768393 cites W3107759164 @default.
- W3194768393 cites W3119785388 @default.
- W3194768393 cites W3125764491 @default.
- W3194768393 cites W3135982901 @default.
- W3194768393 cites W3147485642 @default.
- W3194768393 cites W4246020459 @default.
- W3194768393 cites W8339517 @default.
- W3194768393 cites W1982728652 @default.
- W3194768393 cites W3119828279 @default.
- W3194768393 doi "https://doi.org/10.1109/access.2021.3107782" @default.
- W3194768393 hasPublicationYear "2021" @default.
- W3194768393 type Work @default.
- W3194768393 sameAs 3194768393 @default.
- W3194768393 citedByCount "11" @default.
- W3194768393 countsByYear W31947683932022 @default.
- W3194768393 countsByYear W31947683932023 @default.
- W3194768393 crossrefType "journal-article" @default.
- W3194768393 hasAuthorship W3194768393A5001206618 @default.
- W3194768393 hasAuthorship W3194768393A5006524000 @default.
- W3194768393 hasAuthorship W3194768393A5007409511 @default.
- W3194768393 hasAuthorship W3194768393A5043601489 @default.
- W3194768393 hasAuthorship W3194768393A5053763715 @default.
- W3194768393 hasAuthorship W3194768393A5054300851 @default.
- W3194768393 hasAuthorship W3194768393A5054437207 @default.
- W3194768393 hasAuthorship W3194768393A5059640494 @default.
- W3194768393 hasAuthorship W3194768393A5080844107 @default.
- W3194768393 hasBestOaLocation W31947683931 @default.