Matches in SemOpenAlex for { <https://semopenalex.org/work/W3194839206> ?p ?o ?g. }
- W3194839206 abstract "The electrophoretic motion of a non-uniformly charged particle in an Oldroyd-B fluid is analysed here in the limit of thin electrical double layers. To this end, we analytically derive expressions for the modified Smoluchowski slip velocity around the particle, carrying weak but otherwise arbitrary surface charge. Our analysis reveals that the modified Smoluchowski slip around a particle differs significantly in a viscoelastic medium as compared with Newtonian fluids. The flow field thus derived is applied to two special cases of non-uniformly charged particles to obtain a closed-form expression for their electrophoretic translational and rotational velocities. We show that the particle's velocity strongly depends on its size in a viscoelastic medium, even for weakly charged surfaces, which is in stark contrast to the well-established theory for Newtonian fluids for weakly charged particles with negligible surface conduction. We further demonstrate that the presence of non-uniform surface charge enhances the influence of the medium's viscoelasticity on the particle's translational as well as angular velocity and this effect strongly depends on the nature of surface charge distribution. Such a physical paradigm, which leads to a breaking of fore–aft symmetry that is unique to complex fluids despite operating in the regime of creeping flows. Our study provides new theoretical framework for understanding electrophoresis of charged entities (such as DNA or active matter) in complex fluids, including biologically relevant fluidic media." @default.
- W3194839206 created "2021-08-30" @default.
- W3194839206 creator A5002702169 @default.
- W3194839206 creator A5052920073 @default.
- W3194839206 creator A5071839823 @default.
- W3194839206 date "2021-08-17" @default.
- W3194839206 modified "2023-10-18" @default.
- W3194839206 title "Electrophoretic motion of a non-uniformly charged particle in a viscoelastic medium in thin electrical double layer limit" @default.
- W3194839206 cites W1508330814 @default.
- W3194839206 cites W1967376630 @default.
- W3194839206 cites W1975075001 @default.
- W3194839206 cites W1975452930 @default.
- W3194839206 cites W1976697629 @default.
- W3194839206 cites W1977637767 @default.
- W3194839206 cites W1978142208 @default.
- W3194839206 cites W1980669843 @default.
- W3194839206 cites W1981261123 @default.
- W3194839206 cites W1983539776 @default.
- W3194839206 cites W1987495244 @default.
- W3194839206 cites W1993574259 @default.
- W3194839206 cites W1995893576 @default.
- W3194839206 cites W1998332846 @default.
- W3194839206 cites W2002929368 @default.
- W3194839206 cites W2006574516 @default.
- W3194839206 cites W2012562582 @default.
- W3194839206 cites W2017730398 @default.
- W3194839206 cites W2018053002 @default.
- W3194839206 cites W2019530404 @default.
- W3194839206 cites W2021118398 @default.
- W3194839206 cites W2021646799 @default.
- W3194839206 cites W2025148954 @default.
- W3194839206 cites W2025584111 @default.
- W3194839206 cites W2026907201 @default.
- W3194839206 cites W2028574705 @default.
- W3194839206 cites W2029984341 @default.
- W3194839206 cites W2031577388 @default.
- W3194839206 cites W2035461334 @default.
- W3194839206 cites W2039699962 @default.
- W3194839206 cites W2044474106 @default.
- W3194839206 cites W2044569222 @default.
- W3194839206 cites W2045321633 @default.
- W3194839206 cites W2049273633 @default.
- W3194839206 cites W2055896005 @default.
- W3194839206 cites W2056631163 @default.
- W3194839206 cites W2059867681 @default.
- W3194839206 cites W2063829791 @default.
- W3194839206 cites W2064124874 @default.
- W3194839206 cites W2066500308 @default.
- W3194839206 cites W2067322877 @default.
- W3194839206 cites W2070261950 @default.
- W3194839206 cites W2070383867 @default.
- W3194839206 cites W2077635901 @default.
- W3194839206 cites W2077700582 @default.
- W3194839206 cites W2081853072 @default.
- W3194839206 cites W2083162701 @default.
- W3194839206 cites W2084677747 @default.
- W3194839206 cites W2086006386 @default.
- W3194839206 cites W2086029132 @default.
- W3194839206 cites W2088760296 @default.
- W3194839206 cites W2089360450 @default.
- W3194839206 cites W2092410951 @default.
- W3194839206 cites W2097543230 @default.
- W3194839206 cites W2099106338 @default.
- W3194839206 cites W2101925227 @default.
- W3194839206 cites W2114534435 @default.
- W3194839206 cites W2116627715 @default.
- W3194839206 cites W2141526656 @default.
- W3194839206 cites W2142787271 @default.
- W3194839206 cites W2146577005 @default.
- W3194839206 cites W2155491363 @default.
- W3194839206 cites W2195292385 @default.
- W3194839206 cites W2316783582 @default.
- W3194839206 cites W2324049431 @default.
- W3194839206 cites W2329378795 @default.
- W3194839206 cites W2412355576 @default.
- W3194839206 cites W2553864978 @default.
- W3194839206 cites W2565717907 @default.
- W3194839206 cites W2604205545 @default.
- W3194839206 cites W2692397870 @default.
- W3194839206 cites W2760410431 @default.
- W3194839206 cites W2884054051 @default.
- W3194839206 cites W2914273212 @default.
- W3194839206 cites W2977633499 @default.
- W3194839206 cites W2994409171 @default.
- W3194839206 cites W3100135023 @default.
- W3194839206 cites W3103477119 @default.
- W3194839206 cites W4231892824 @default.
- W3194839206 cites W4255813750 @default.
- W3194839206 cites W576767351 @default.
- W3194839206 cites W86166617 @default.
- W3194839206 doi "https://doi.org/10.1017/jfm.2021.643" @default.
- W3194839206 hasPublicationYear "2021" @default.
- W3194839206 type Work @default.
- W3194839206 sameAs 3194839206 @default.
- W3194839206 citedByCount "5" @default.
- W3194839206 countsByYear W31948392062021 @default.
- W3194839206 countsByYear W31948392062022 @default.
- W3194839206 countsByYear W31948392062023 @default.
- W3194839206 crossrefType "journal-article" @default.
- W3194839206 hasAuthorship W3194839206A5002702169 @default.