Matches in SemOpenAlex for { <https://semopenalex.org/work/W3194878131> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W3194878131 endingPage "78" @default.
- W3194878131 startingPage "69" @default.
- W3194878131 abstract "Distinguishing P300 signals from other components of the EEG is one of the mostchallenging issues in Brain Computer Interface (BCI) applications, and machine learningmethods have vastly been utilized as effective tools to perform such separation. Althoughin recent years deep neural networks have significantly improved the quality of the abovedetection, the significant similarity between P300 and other components of EEG in parallelwith their unrepeatable nature have led to P300 detection, which are still an open problemin BCI domain. In this study, a novel architecture is proposed in order to detect P300 signalamong EEG, in which the temporal learning concept is engaged as a new substructureinside the main Convolutional Neural Network (CNN). The above Temporal ConvolutionalNetwork (TCN) may better address the problem of P300 detection, thanks to its potentialin involving time sequence properties in modelling of these signals. The performance ofthe proposed method is evaluated on the EPFL BCI dataset, and the obtained results arecompared in two inter-subject and intra-subject scenarios with the results of classical CNNin which temporal properties of input are not considered. Increased True Positive Rate ofthe proposed method (an average of 4 percent) and its accuracy (an average of 2.9 percent)in parallel with the decrease in its False Positive Rate (averagely 3.1 percent) shows theeffectiveness of the TCN structure in promoting the detection procedure of P300 signals inBCI applications" @default.
- W3194878131 created "2021-08-30" @default.
- W3194878131 creator A5023178841 @default.
- W3194878131 creator A5044450642 @default.
- W3194878131 creator A5080920729 @default.
- W3194878131 date "2021-01-01" @default.
- W3194878131 modified "2023-09-23" @default.
- W3194878131 title "Temporal Convolutional Learning: A New Sequence-based Structure to Promote the Performance of Convolutional Neural Networks in Recognizing P300 Signals" @default.
- W3194878131 hasPublicationYear "2021" @default.
- W3194878131 type Work @default.
- W3194878131 sameAs 3194878131 @default.
- W3194878131 citedByCount "0" @default.
- W3194878131 crossrefType "journal-article" @default.
- W3194878131 hasAuthorship W3194878131A5023178841 @default.
- W3194878131 hasAuthorship W3194878131A5044450642 @default.
- W3194878131 hasAuthorship W3194878131A5080920729 @default.
- W3194878131 hasConcept C103278499 @default.
- W3194878131 hasConcept C108583219 @default.
- W3194878131 hasConcept C115961682 @default.
- W3194878131 hasConcept C118552586 @default.
- W3194878131 hasConcept C119857082 @default.
- W3194878131 hasConcept C134306372 @default.
- W3194878131 hasConcept C153180895 @default.
- W3194878131 hasConcept C154945302 @default.
- W3194878131 hasConcept C15744967 @default.
- W3194878131 hasConcept C173201364 @default.
- W3194878131 hasConcept C28490314 @default.
- W3194878131 hasConcept C33923547 @default.
- W3194878131 hasConcept C36503486 @default.
- W3194878131 hasConcept C41008148 @default.
- W3194878131 hasConcept C50644808 @default.
- W3194878131 hasConcept C522805319 @default.
- W3194878131 hasConcept C81363708 @default.
- W3194878131 hasConceptScore W3194878131C103278499 @default.
- W3194878131 hasConceptScore W3194878131C108583219 @default.
- W3194878131 hasConceptScore W3194878131C115961682 @default.
- W3194878131 hasConceptScore W3194878131C118552586 @default.
- W3194878131 hasConceptScore W3194878131C119857082 @default.
- W3194878131 hasConceptScore W3194878131C134306372 @default.
- W3194878131 hasConceptScore W3194878131C153180895 @default.
- W3194878131 hasConceptScore W3194878131C154945302 @default.
- W3194878131 hasConceptScore W3194878131C15744967 @default.
- W3194878131 hasConceptScore W3194878131C173201364 @default.
- W3194878131 hasConceptScore W3194878131C28490314 @default.
- W3194878131 hasConceptScore W3194878131C33923547 @default.
- W3194878131 hasConceptScore W3194878131C36503486 @default.
- W3194878131 hasConceptScore W3194878131C41008148 @default.
- W3194878131 hasConceptScore W3194878131C50644808 @default.
- W3194878131 hasConceptScore W3194878131C522805319 @default.
- W3194878131 hasConceptScore W3194878131C81363708 @default.
- W3194878131 hasIssue "1" @default.
- W3194878131 hasLocation W31948781311 @default.
- W3194878131 hasOpenAccess W3194878131 @default.
- W3194878131 hasPrimaryLocation W31948781311 @default.
- W3194878131 hasRelatedWork W2557301950 @default.
- W3194878131 hasRelatedWork W2802340879 @default.
- W3194878131 hasRelatedWork W2897351303 @default.
- W3194878131 hasRelatedWork W2900269840 @default.
- W3194878131 hasRelatedWork W2910783468 @default.
- W3194878131 hasRelatedWork W2913246999 @default.
- W3194878131 hasRelatedWork W2951695220 @default.
- W3194878131 hasRelatedWork W2966010920 @default.
- W3194878131 hasRelatedWork W2989842085 @default.
- W3194878131 hasRelatedWork W2990721662 @default.
- W3194878131 hasRelatedWork W2990809856 @default.
- W3194878131 hasRelatedWork W2995176960 @default.
- W3194878131 hasRelatedWork W2998905430 @default.
- W3194878131 hasRelatedWork W3019839791 @default.
- W3194878131 hasRelatedWork W3112695512 @default.
- W3194878131 hasRelatedWork W3125533742 @default.
- W3194878131 hasRelatedWork W3128566578 @default.
- W3194878131 hasRelatedWork W3129964406 @default.
- W3194878131 hasRelatedWork W3133048813 @default.
- W3194878131 hasRelatedWork W3196226472 @default.
- W3194878131 hasVolume "8" @default.
- W3194878131 isParatext "false" @default.
- W3194878131 isRetracted "false" @default.
- W3194878131 magId "3194878131" @default.
- W3194878131 workType "article" @default.