Matches in SemOpenAlex for { <https://semopenalex.org/work/W3194880107> ?p ?o ?g. }
- W3194880107 endingPage "105859" @default.
- W3194880107 startingPage "105859" @default.
- W3194880107 abstract "Maritime safety is critical as many maritime accidents involve catastrophic consequences, including both fatalities and financial loss. To identify the factors which caused maritime accidents and provide a comprehensive suggestion for maritime administrators and mariners, a data-driven Bayesian Network (BN) is developed to analyse the major accidents records in the Chinese coastal waters by using an advanced machine learning approach. For this aim, the statistical interactions among causation factors identified from major accidents records are paired to construct the BN. Then the obtained BN is validated through a two-step validation process and a comparison analysis to demonstrate its superiorities in reliability and efficiency. The results revealed the importance of different risk influencing factors and the critical scenarios in the coastal waters. The small general cargo ships are the riskiest of in the coastal waters of China. While, bad weather conditions often lead to catastrophic accidents and minor accidents often happen in waters with low traffic density. The research findings could provide useful guidance to support risk preventions, and advance the maritime safety management system in coastal waters." @default.
- W3194880107 created "2021-08-30" @default.
- W3194880107 creator A5002838722 @default.
- W3194880107 creator A5064657797 @default.
- W3194880107 creator A5066507343 @default.
- W3194880107 creator A5086833372 @default.
- W3194880107 creator A5088177440 @default.
- W3194880107 date "2021-11-01" @default.
- W3194880107 modified "2023-10-16" @default.
- W3194880107 title "A systematic analysis for maritime accidents causation in Chinese coastal waters using machine learning approaches" @default.
- W3194880107 cites W1992060880 @default.
- W3194880107 cites W2013845817 @default.
- W3194880107 cites W2015127657 @default.
- W3194880107 cites W2016686020 @default.
- W3194880107 cites W2018571157 @default.
- W3194880107 cites W2026433895 @default.
- W3194880107 cites W2032910161 @default.
- W3194880107 cites W2036882804 @default.
- W3194880107 cites W2045759663 @default.
- W3194880107 cites W2056716515 @default.
- W3194880107 cites W2060015400 @default.
- W3194880107 cites W2067627945 @default.
- W3194880107 cites W2081090734 @default.
- W3194880107 cites W2090369806 @default.
- W3194880107 cites W2133945625 @default.
- W3194880107 cites W2562271891 @default.
- W3194880107 cites W2583804092 @default.
- W3194880107 cites W2626066084 @default.
- W3194880107 cites W2775633034 @default.
- W3194880107 cites W2792522670 @default.
- W3194880107 cites W2793918899 @default.
- W3194880107 cites W2800077253 @default.
- W3194880107 cites W2804241114 @default.
- W3194880107 cites W2884323833 @default.
- W3194880107 cites W2890105502 @default.
- W3194880107 cites W2895110241 @default.
- W3194880107 cites W2898633484 @default.
- W3194880107 cites W2930958992 @default.
- W3194880107 cites W2977243132 @default.
- W3194880107 cites W2984636508 @default.
- W3194880107 cites W2990089646 @default.
- W3194880107 cites W3009012390 @default.
- W3194880107 cites W3011627975 @default.
- W3194880107 cites W3011755488 @default.
- W3194880107 cites W3035709542 @default.
- W3194880107 cites W3039653437 @default.
- W3194880107 cites W3042279734 @default.
- W3194880107 cites W3096157406 @default.
- W3194880107 cites W3099431668 @default.
- W3194880107 cites W3105606949 @default.
- W3194880107 cites W3128181551 @default.
- W3194880107 cites W3164649394 @default.
- W3194880107 cites W3171355605 @default.
- W3194880107 cites W3176128572 @default.
- W3194880107 cites W4251575984 @default.
- W3194880107 cites W637200496 @default.
- W3194880107 doi "https://doi.org/10.1016/j.ocecoaman.2021.105859" @default.
- W3194880107 hasPublicationYear "2021" @default.
- W3194880107 type Work @default.
- W3194880107 sameAs 3194880107 @default.
- W3194880107 citedByCount "52" @default.
- W3194880107 countsByYear W31948801072021 @default.
- W3194880107 countsByYear W31948801072022 @default.
- W3194880107 countsByYear W31948801072023 @default.
- W3194880107 crossrefType "journal-article" @default.
- W3194880107 hasAuthorship W3194880107A5002838722 @default.
- W3194880107 hasAuthorship W3194880107A5064657797 @default.
- W3194880107 hasAuthorship W3194880107A5066507343 @default.
- W3194880107 hasAuthorship W3194880107A5086833372 @default.
- W3194880107 hasAuthorship W3194880107A5088177440 @default.
- W3194880107 hasConcept C107826830 @default.
- W3194880107 hasConcept C111919701 @default.
- W3194880107 hasConcept C112930515 @default.
- W3194880107 hasConcept C121332964 @default.
- W3194880107 hasConcept C144133560 @default.
- W3194880107 hasConcept C154945302 @default.
- W3194880107 hasConcept C163258240 @default.
- W3194880107 hasConcept C166151441 @default.
- W3194880107 hasConcept C166957645 @default.
- W3194880107 hasConcept C17744445 @default.
- W3194880107 hasConcept C191935318 @default.
- W3194880107 hasConcept C199360897 @default.
- W3194880107 hasConcept C199539241 @default.
- W3194880107 hasConcept C205649164 @default.
- W3194880107 hasConcept C2780801425 @default.
- W3194880107 hasConcept C2994576272 @default.
- W3194880107 hasConcept C33724603 @default.
- W3194880107 hasConcept C39432304 @default.
- W3194880107 hasConcept C41008148 @default.
- W3194880107 hasConcept C43214815 @default.
- W3194880107 hasConcept C62520636 @default.
- W3194880107 hasConcept C91375879 @default.
- W3194880107 hasConcept C98045186 @default.
- W3194880107 hasConceptScore W3194880107C107826830 @default.
- W3194880107 hasConceptScore W3194880107C111919701 @default.
- W3194880107 hasConceptScore W3194880107C112930515 @default.
- W3194880107 hasConceptScore W3194880107C121332964 @default.
- W3194880107 hasConceptScore W3194880107C144133560 @default.