Matches in SemOpenAlex for { <https://semopenalex.org/work/W3194906172> ?p ?o ?g. }
- W3194906172 endingPage "10609" @default.
- W3194906172 startingPage "10596" @default.
- W3194906172 abstract "The emergence of connected vehicle (CV) technologies has created new traffic control opportunities, among them, is the potential to estimate volume without approach lane detection. Rather than requiring the expense and effort to install and maintain detector systems, this new “detector-free” method permits traffic volume to be estimated from CV GPS trajectory data. Unfortunately, however, CV GPS methods are limited not only to locations where CV GPS data can be recorded, but also limited to time when CV GPS data is recorded. The goal of this research was to overcome these limitations and permit volume estimation to be accomplished under any location or condition, including low-penetration CV environments. The contributions made by this work are significant in two respects. First, it creates an improved queue-based method to estimate intersection approach volumes during each signal cycle with sparse CV data. Second, the research demonstrates the application of a Bayesian deduction method to approximate volume with no CV trajectory data. To accomplish this, traffic volumes are assumed to be time-dependent Poisson distributed throughout the day, and CV data were used to estimate CV volume and further set as prior to deduce the time-dependent Poisson arrival rate. To verify and evaluate the accuracy and effectiveness of this new method under a range of potential traffic conditions, a simulation case study and a NGSIM case study were implemented. Results of both case studies resulted in estimated-to-actual arrival rate average errors as low as 4.2 percent and volume estimation errors as low as 0.9 percent." @default.
- W3194906172 created "2021-08-30" @default.
- W3194906172 creator A5004252138 @default.
- W3194906172 creator A5015660715 @default.
- W3194906172 creator A5060470951 @default.
- W3194906172 creator A5060973669 @default.
- W3194906172 creator A5078136508 @default.
- W3194906172 creator A5086099075 @default.
- W3194906172 date "2022-08-01" @default.
- W3194906172 modified "2023-10-16" @default.
- W3194906172 title "Traffic Volume Estimate Based on Low Penetration Connected Vehicle Data at Signalized Intersections: A Bayesian Deduction Approach" @default.
- W3194906172 cites W1043876128 @default.
- W3194906172 cites W1514578609 @default.
- W3194906172 cites W1969030631 @default.
- W3194906172 cites W1971967146 @default.
- W3194906172 cites W1980258017 @default.
- W3194906172 cites W1986800845 @default.
- W3194906172 cites W1987126001 @default.
- W3194906172 cites W2004891103 @default.
- W3194906172 cites W2011504567 @default.
- W3194906172 cites W2016025229 @default.
- W3194906172 cites W2063890507 @default.
- W3194906172 cites W2076077609 @default.
- W3194906172 cites W2093921901 @default.
- W3194906172 cites W2097833556 @default.
- W3194906172 cites W2115032462 @default.
- W3194906172 cites W2121836204 @default.
- W3194906172 cites W2128705412 @default.
- W3194906172 cites W2132140174 @default.
- W3194906172 cites W2156163528 @default.
- W3194906172 cites W2168957171 @default.
- W3194906172 cites W2317702959 @default.
- W3194906172 cites W2486602667 @default.
- W3194906172 cites W2583284627 @default.
- W3194906172 cites W2607080081 @default.
- W3194906172 cites W2739166195 @default.
- W3194906172 cites W2777429263 @default.
- W3194906172 cites W2790996921 @default.
- W3194906172 cites W2807467121 @default.
- W3194906172 cites W2952734083 @default.
- W3194906172 cites W2957240059 @default.
- W3194906172 cites W2964356109 @default.
- W3194906172 cites W2993977285 @default.
- W3194906172 cites W4255975151 @default.
- W3194906172 cites W924558455 @default.
- W3194906172 doi "https://doi.org/10.1109/tits.2021.3094933" @default.
- W3194906172 hasPublicationYear "2022" @default.
- W3194906172 type Work @default.
- W3194906172 sameAs 3194906172 @default.
- W3194906172 citedByCount "1" @default.
- W3194906172 countsByYear W31949061722023 @default.
- W3194906172 crossrefType "journal-article" @default.
- W3194906172 hasAuthorship W3194906172A5004252138 @default.
- W3194906172 hasAuthorship W3194906172A5015660715 @default.
- W3194906172 hasAuthorship W3194906172A5060470951 @default.
- W3194906172 hasAuthorship W3194906172A5060973669 @default.
- W3194906172 hasAuthorship W3194906172A5078136508 @default.
- W3194906172 hasAuthorship W3194906172A5086099075 @default.
- W3194906172 hasConcept C100906024 @default.
- W3194906172 hasConcept C105795698 @default.
- W3194906172 hasConcept C11413529 @default.
- W3194906172 hasConcept C121332964 @default.
- W3194906172 hasConcept C127413603 @default.
- W3194906172 hasConcept C1276947 @default.
- W3194906172 hasConcept C13662910 @default.
- W3194906172 hasConcept C168443057 @default.
- W3194906172 hasConcept C20556612 @default.
- W3194906172 hasConcept C22212356 @default.
- W3194906172 hasConcept C33923547 @default.
- W3194906172 hasConcept C41008148 @default.
- W3194906172 hasConcept C44154836 @default.
- W3194906172 hasConcept C60229501 @default.
- W3194906172 hasConcept C62520636 @default.
- W3194906172 hasConcept C64543145 @default.
- W3194906172 hasConcept C76155785 @default.
- W3194906172 hasConcept C79403827 @default.
- W3194906172 hasConcept C94915269 @default.
- W3194906172 hasConceptScore W3194906172C100906024 @default.
- W3194906172 hasConceptScore W3194906172C105795698 @default.
- W3194906172 hasConceptScore W3194906172C11413529 @default.
- W3194906172 hasConceptScore W3194906172C121332964 @default.
- W3194906172 hasConceptScore W3194906172C127413603 @default.
- W3194906172 hasConceptScore W3194906172C1276947 @default.
- W3194906172 hasConceptScore W3194906172C13662910 @default.
- W3194906172 hasConceptScore W3194906172C168443057 @default.
- W3194906172 hasConceptScore W3194906172C20556612 @default.
- W3194906172 hasConceptScore W3194906172C22212356 @default.
- W3194906172 hasConceptScore W3194906172C33923547 @default.
- W3194906172 hasConceptScore W3194906172C41008148 @default.
- W3194906172 hasConceptScore W3194906172C44154836 @default.
- W3194906172 hasConceptScore W3194906172C60229501 @default.
- W3194906172 hasConceptScore W3194906172C62520636 @default.
- W3194906172 hasConceptScore W3194906172C64543145 @default.
- W3194906172 hasConceptScore W3194906172C76155785 @default.
- W3194906172 hasConceptScore W3194906172C79403827 @default.
- W3194906172 hasConceptScore W3194906172C94915269 @default.
- W3194906172 hasFunder F4320321001 @default.
- W3194906172 hasFunder F4320335777 @default.