Matches in SemOpenAlex for { <https://semopenalex.org/work/W3194925824> ?p ?o ?g. }
- W3194925824 endingPage "3192" @default.
- W3194925824 startingPage "3192" @default.
- W3194925824 abstract "At present, reliable and precise ship detection in high-resolution optical remote sensing images affected by wave clutter, thin clouds, and islands under complex sea conditions is still challenging. At the same time, object detection algorithms in satellite remote sensing images are challenged by color, aspect ratio, complex background, and angle variability. Even the results obtained based on the latest convolutional neural network (CNN) method are not satisfactory. In order to obtain more accurate ship detection results, this paper proposes a remote sensing image ship object detection method based on a brainlike visual attention mechanism. We refer to the robust expression mode of the human brain, design a vector field filter with active rotation capability, and explicitly encode the direction information of the remote sensing object in the neural network. The progressive enhancement learning model guided by the visual attention mechanism is used to dynamically solve the problem, and the object can be discovered and detected through time–space information. To verify the effectiveness of the proposed method, a remote sensing ship object detection data set is established, and the proposed method is compared with other state-of-the-art methods on the established data set. Experiments show that the object detection accuracy of this method and the ability to capture image details have been improved. Compared with other models, the average intersection rate of the joint is 80.12%, which shows a clear advantage. The proposed method is fast enough to meet the needs of ship detection in remote sensing images." @default.
- W3194925824 created "2021-08-30" @default.
- W3194925824 creator A5015696037 @default.
- W3194925824 creator A5043603162 @default.
- W3194925824 creator A5059088933 @default.
- W3194925824 creator A5088664989 @default.
- W3194925824 date "2021-08-12" @default.
- W3194925824 modified "2023-10-13" @default.
- W3194925824 title "Ship Object Detection of Remote Sensing Image Based on Visual Attention" @default.
- W3194925824 cites W2003059629 @default.
- W3194925824 cites W2010472122 @default.
- W3194925824 cites W2017226600 @default.
- W3194925824 cites W2031489346 @default.
- W3194925824 cites W2037227137 @default.
- W3194925824 cites W2085625911 @default.
- W3194925824 cites W2100503224 @default.
- W3194925824 cites W2109255472 @default.
- W3194925824 cites W2112796928 @default.
- W3194925824 cites W2182758019 @default.
- W3194925824 cites W2183182206 @default.
- W3194925824 cites W2308318555 @default.
- W3194925824 cites W2390878590 @default.
- W3194925824 cites W2465132919 @default.
- W3194925824 cites W2550157261 @default.
- W3194925824 cites W2562706821 @default.
- W3194925824 cites W2618530766 @default.
- W3194925824 cites W2788202095 @default.
- W3194925824 cites W2791979332 @default.
- W3194925824 cites W2803740064 @default.
- W3194925824 cites W2896903403 @default.
- W3194925824 cites W2912834795 @default.
- W3194925824 cites W2922225410 @default.
- W3194925824 cites W2928870406 @default.
- W3194925824 cites W2944838875 @default.
- W3194925824 cites W2968090415 @default.
- W3194925824 cites W2992240579 @default.
- W3194925824 cites W3000097815 @default.
- W3194925824 cites W3032249063 @default.
- W3194925824 cites W3035992774 @default.
- W3194925824 cites W3081112357 @default.
- W3194925824 cites W3102864715 @default.
- W3194925824 cites W639708223 @default.
- W3194925824 doi "https://doi.org/10.3390/rs13163192" @default.
- W3194925824 hasPublicationYear "2021" @default.
- W3194925824 type Work @default.
- W3194925824 sameAs 3194925824 @default.
- W3194925824 citedByCount "15" @default.
- W3194925824 countsByYear W31949258242021 @default.
- W3194925824 countsByYear W31949258242022 @default.
- W3194925824 countsByYear W31949258242023 @default.
- W3194925824 crossrefType "journal-article" @default.
- W3194925824 hasAuthorship W3194925824A5015696037 @default.
- W3194925824 hasAuthorship W3194925824A5043603162 @default.
- W3194925824 hasAuthorship W3194925824A5059088933 @default.
- W3194925824 hasAuthorship W3194925824A5088664989 @default.
- W3194925824 hasBestOaLocation W31949258241 @default.
- W3194925824 hasConcept C127313418 @default.
- W3194925824 hasConcept C132094186 @default.
- W3194925824 hasConcept C153180895 @default.
- W3194925824 hasConcept C154945302 @default.
- W3194925824 hasConcept C177264268 @default.
- W3194925824 hasConcept C199360897 @default.
- W3194925824 hasConcept C2776151529 @default.
- W3194925824 hasConcept C31972630 @default.
- W3194925824 hasConcept C41008148 @default.
- W3194925824 hasConcept C554190296 @default.
- W3194925824 hasConcept C62649853 @default.
- W3194925824 hasConcept C76155785 @default.
- W3194925824 hasConcept C81363708 @default.
- W3194925824 hasConceptScore W3194925824C127313418 @default.
- W3194925824 hasConceptScore W3194925824C132094186 @default.
- W3194925824 hasConceptScore W3194925824C153180895 @default.
- W3194925824 hasConceptScore W3194925824C154945302 @default.
- W3194925824 hasConceptScore W3194925824C177264268 @default.
- W3194925824 hasConceptScore W3194925824C199360897 @default.
- W3194925824 hasConceptScore W3194925824C2776151529 @default.
- W3194925824 hasConceptScore W3194925824C31972630 @default.
- W3194925824 hasConceptScore W3194925824C41008148 @default.
- W3194925824 hasConceptScore W3194925824C554190296 @default.
- W3194925824 hasConceptScore W3194925824C62649853 @default.
- W3194925824 hasConceptScore W3194925824C76155785 @default.
- W3194925824 hasConceptScore W3194925824C81363708 @default.
- W3194925824 hasFunder F4320321543 @default.
- W3194925824 hasFunder F4320335787 @default.
- W3194925824 hasIssue "16" @default.
- W3194925824 hasLocation W31949258241 @default.
- W3194925824 hasOpenAccess W3194925824 @default.
- W3194925824 hasPrimaryLocation W31949258241 @default.
- W3194925824 hasRelatedWork W1489399123 @default.
- W3194925824 hasRelatedWork W1550912305 @default.
- W3194925824 hasRelatedWork W2032041146 @default.
- W3194925824 hasRelatedWork W2079531124 @default.
- W3194925824 hasRelatedWork W2141294180 @default.
- W3194925824 hasRelatedWork W2161193411 @default.
- W3194925824 hasRelatedWork W2357365693 @default.
- W3194925824 hasRelatedWork W2408846072 @default.
- W3194925824 hasRelatedWork W2922421953 @default.
- W3194925824 hasRelatedWork W3002270006 @default.