Matches in SemOpenAlex for { <https://semopenalex.org/work/W3194931415> ?p ?o ?g. }
- W3194931415 endingPage "173" @default.
- W3194931415 startingPage "162" @default.
- W3194931415 abstract "Surface Electromyography (sEMG) plays a key role in many applications such as control of Human-Machine Interfaces (HMI) and neuromusculoskeletal modeling. It has strongly nonlinear relations to joint kinematics and reflects the subjects’ intention in moving their limbs. Such relations have been traditionally examined by either integrated biomechanics and multi-body dynamics or gesture-based classification approaches. However, these methods have drawbacks that limit their usability. Different from them, joint kinematics can be continuously reconstructed from sEMG via estimation approaches, for instance, the Artificial Neural Networks (ANNs). The Comparison of different ANNs used in different studies is difficult, and in many cases, impossible. The current study focuses on fairly evaluating four types of ANN over the same dataset and conditions in proportional and simultaneous estimation of 15 hand joint angles from 10 sEMG signals. The presented ANNs are Feedforward, Cascade-Forward, Radial Basis Function (RBFNN), and Generalized Regression (GRNN). Each ANN is applied to its special parametric study. All the methods efficiently solved the regression problem of the complex multi-input multi-output bio-system. The RBFNN has the best performance over the others with a 79.80% mean correlation coefficient over all joints, and its accuracy reaches as high as 92.67% in some joints. Interestingly, the highest accuracy over individual joints is 93.46%, which is achieved via the GRNN. The good accuracy suggests that the proposed approaches can be used as alternatives to the previously adopted ones and can be employed effectively to synchronously control multi-degrees of freedom HMI and for general multi-joint kinematics estimation purposes." @default.
- W3194931415 created "2021-08-30" @default.
- W3194931415 creator A5036383363 @default.
- W3194931415 creator A5054115113 @default.
- W3194931415 creator A5077466090 @default.
- W3194931415 date "2022-04-01" @default.
- W3194931415 modified "2023-09-30" @default.
- W3194931415 title "Comparing the efficiency of artificial neural networks in sEMG-based simultaneous and continuous estimation of hand kinematics" @default.
- W3194931415 cites W1964025242 @default.
- W3194931415 cites W1975481772 @default.
- W3194931415 cites W1983395152 @default.
- W3194931415 cites W2006039011 @default.
- W3194931415 cites W2032246760 @default.
- W3194931415 cites W2039041360 @default.
- W3194931415 cites W2048207309 @default.
- W3194931415 cites W2063755974 @default.
- W3194931415 cites W2072588720 @default.
- W3194931415 cites W2093254109 @default.
- W3194931415 cites W2113442785 @default.
- W3194931415 cites W2115647181 @default.
- W3194931415 cites W2122865181 @default.
- W3194931415 cites W2129308247 @default.
- W3194931415 cites W2129566274 @default.
- W3194931415 cites W2134490360 @default.
- W3194931415 cites W2137983211 @default.
- W3194931415 cites W2141049796 @default.
- W3194931415 cites W2142265225 @default.
- W3194931415 cites W2149723649 @default.
- W3194931415 cites W2155399784 @default.
- W3194931415 cites W2155482699 @default.
- W3194931415 cites W2169931829 @default.
- W3194931415 cites W2243789297 @default.
- W3194931415 cites W2293093005 @default.
- W3194931415 cites W2543193073 @default.
- W3194931415 cites W2747523765 @default.
- W3194931415 cites W2762367260 @default.
- W3194931415 cites W2765746460 @default.
- W3194931415 cites W3014621475 @default.
- W3194931415 cites W885551291 @default.
- W3194931415 doi "https://doi.org/10.1016/j.dcan.2021.08.002" @default.
- W3194931415 hasPublicationYear "2022" @default.
- W3194931415 type Work @default.
- W3194931415 sameAs 3194931415 @default.
- W3194931415 citedByCount "3" @default.
- W3194931415 countsByYear W31949314152022 @default.
- W3194931415 countsByYear W31949314152023 @default.
- W3194931415 crossrefType "journal-article" @default.
- W3194931415 hasAuthorship W3194931415A5036383363 @default.
- W3194931415 hasAuthorship W3194931415A5054115113 @default.
- W3194931415 hasAuthorship W3194931415A5077466090 @default.
- W3194931415 hasBestOaLocation W31949314151 @default.
- W3194931415 hasConcept C105795698 @default.
- W3194931415 hasConcept C117251300 @default.
- W3194931415 hasConcept C119857082 @default.
- W3194931415 hasConcept C121332964 @default.
- W3194931415 hasConcept C127413603 @default.
- W3194931415 hasConcept C153180895 @default.
- W3194931415 hasConcept C154945302 @default.
- W3194931415 hasConcept C160970401 @default.
- W3194931415 hasConcept C170154142 @default.
- W3194931415 hasConcept C17816587 @default.
- W3194931415 hasConcept C18555067 @default.
- W3194931415 hasConcept C33923547 @default.
- W3194931415 hasConcept C39920418 @default.
- W3194931415 hasConcept C41008148 @default.
- W3194931415 hasConcept C50644808 @default.
- W3194931415 hasConcept C74650414 @default.
- W3194931415 hasConcept C90509273 @default.
- W3194931415 hasConceptScore W3194931415C105795698 @default.
- W3194931415 hasConceptScore W3194931415C117251300 @default.
- W3194931415 hasConceptScore W3194931415C119857082 @default.
- W3194931415 hasConceptScore W3194931415C121332964 @default.
- W3194931415 hasConceptScore W3194931415C127413603 @default.
- W3194931415 hasConceptScore W3194931415C153180895 @default.
- W3194931415 hasConceptScore W3194931415C154945302 @default.
- W3194931415 hasConceptScore W3194931415C160970401 @default.
- W3194931415 hasConceptScore W3194931415C170154142 @default.
- W3194931415 hasConceptScore W3194931415C17816587 @default.
- W3194931415 hasConceptScore W3194931415C18555067 @default.
- W3194931415 hasConceptScore W3194931415C33923547 @default.
- W3194931415 hasConceptScore W3194931415C39920418 @default.
- W3194931415 hasConceptScore W3194931415C41008148 @default.
- W3194931415 hasConceptScore W3194931415C50644808 @default.
- W3194931415 hasConceptScore W3194931415C74650414 @default.
- W3194931415 hasConceptScore W3194931415C90509273 @default.
- W3194931415 hasFunder F4320322303 @default.
- W3194931415 hasIssue "2" @default.
- W3194931415 hasLocation W31949314151 @default.
- W3194931415 hasOpenAccess W3194931415 @default.
- W3194931415 hasPrimaryLocation W31949314151 @default.
- W3194931415 hasRelatedWork W2030530201 @default.
- W3194931415 hasRelatedWork W2353085265 @default.
- W3194931415 hasRelatedWork W2961085424 @default.
- W3194931415 hasRelatedWork W3046775127 @default.
- W3194931415 hasRelatedWork W4285260836 @default.
- W3194931415 hasRelatedWork W4286629047 @default.
- W3194931415 hasRelatedWork W4306321456 @default.
- W3194931415 hasRelatedWork W4306674287 @default.