Matches in SemOpenAlex for { <https://semopenalex.org/work/W3194948448> ?p ?o ?g. }
- W3194948448 endingPage "151" @default.
- W3194948448 startingPage "131" @default.
- W3194948448 abstract "Various techniques have been proposed to learn subspace features from a large number of vibration signals in rotating machine fault diagnosis. These include linear subspace learning (LSL), nonlinear subspace learning, and feature-selection techniques. LSL has been extensively used in several areas of information processing, such as data mining, dimensionality reduction, and pattern recognition. The basic idea of LSL is to map a high-dimensional feature space to a lower-dimensional feature space through linear projection. This chapter presents LSL techniques that can be used to learn features from a large amount of vibration signals. The techniques include: principal component analysis (PCA), independent component analysis (ICA), linear discriminant analysis (LDA), canonical correlation analysis (CCA), and partial least squares (PLS). Of these techniques, PCA, ICA, and LDA are amongst the most commonly used in machine fault diagnosis. CCA and PLS have been considered in many application of fault detection including machine fault detection." @default.
- W3194948448 created "2021-08-30" @default.
- W3194948448 creator A5010643037 @default.
- W3194948448 creator A5042560374 @default.
- W3194948448 date "2019-12-06" @default.
- W3194948448 modified "2023-09-25" @default.
- W3194948448 title "Linear Subspace Learning" @default.
- W3194948448 cites W1575439763 @default.
- W3194948448 cites W1619725525 @default.
- W3194948448 cites W1667046786 @default.
- W3194948448 cites W174064755 @default.
- W3194948448 cites W1967679317 @default.
- W3194948448 cites W1979357005 @default.
- W3194948448 cites W1986594951 @default.
- W3194948448 cites W1992153900 @default.
- W3194948448 cites W2002425256 @default.
- W3194948448 cites W2005297123 @default.
- W3194948448 cites W2012509466 @default.
- W3194948448 cites W2016393776 @default.
- W3194948448 cites W2019380100 @default.
- W3194948448 cites W2019502123 @default.
- W3194948448 cites W2026282013 @default.
- W3194948448 cites W2027763571 @default.
- W3194948448 cites W2031321561 @default.
- W3194948448 cites W2032187702 @default.
- W3194948448 cites W2052828853 @default.
- W3194948448 cites W2056085433 @default.
- W3194948448 cites W2059088665 @default.
- W3194948448 cites W2060113696 @default.
- W3194948448 cites W2063526924 @default.
- W3194948448 cites W2064733273 @default.
- W3194948448 cites W20683381 @default.
- W3194948448 cites W2073503722 @default.
- W3194948448 cites W2078841894 @default.
- W3194948448 cites W2079473768 @default.
- W3194948448 cites W2089468765 @default.
- W3194948448 cites W2093598546 @default.
- W3194948448 cites W2099741732 @default.
- W3194948448 cites W2100235303 @default.
- W3194948448 cites W2108384452 @default.
- W3194948448 cites W2114217318 @default.
- W3194948448 cites W2114958144 @default.
- W3194948448 cites W2122378993 @default.
- W3194948448 cites W2123649031 @default.
- W3194948448 cites W2141188346 @default.
- W3194948448 cites W2141224535 @default.
- W3194948448 cites W2145277351 @default.
- W3194948448 cites W2146672645 @default.
- W3194948448 cites W2154182076 @default.
- W3194948448 cites W2158863190 @default.
- W3194948448 cites W2162529253 @default.
- W3194948448 cites W2166907204 @default.
- W3194948448 cites W2217088832 @default.
- W3194948448 cites W2286630851 @default.
- W3194948448 cites W2301441242 @default.
- W3194948448 cites W2331195986 @default.
- W3194948448 cites W2478189646 @default.
- W3194948448 cites W2588149226 @default.
- W3194948448 cites W2608273225 @default.
- W3194948448 cites W2612794522 @default.
- W3194948448 cites W2721559013 @default.
- W3194948448 cites W2741385306 @default.
- W3194948448 cites W2777815485 @default.
- W3194948448 cites W2786353063 @default.
- W3194948448 cites W2888502647 @default.
- W3194948448 cites W2901260436 @default.
- W3194948448 cites W4237723258 @default.
- W3194948448 cites W4245035783 @default.
- W3194948448 doi "https://doi.org/10.1002/9781119544678.ch7" @default.
- W3194948448 hasPublicationYear "2019" @default.
- W3194948448 type Work @default.
- W3194948448 sameAs 3194948448 @default.
- W3194948448 citedByCount "0" @default.
- W3194948448 crossrefType "other" @default.
- W3194948448 hasAuthorship W3194948448A5010643037 @default.
- W3194948448 hasAuthorship W3194948448A5042560374 @default.
- W3194948448 hasConcept C111030470 @default.
- W3194948448 hasConcept C11413529 @default.
- W3194948448 hasConcept C138885662 @default.
- W3194948448 hasConcept C148483581 @default.
- W3194948448 hasConcept C153180895 @default.
- W3194948448 hasConcept C153874254 @default.
- W3194948448 hasConcept C154945302 @default.
- W3194948448 hasConcept C27438332 @default.
- W3194948448 hasConcept C2776401178 @default.
- W3194948448 hasConcept C32834561 @default.
- W3194948448 hasConcept C33923547 @default.
- W3194948448 hasConcept C41008148 @default.
- W3194948448 hasConcept C41895202 @default.
- W3194948448 hasConcept C51432778 @default.
- W3194948448 hasConcept C52622490 @default.
- W3194948448 hasConcept C57493831 @default.
- W3194948448 hasConcept C69738355 @default.
- W3194948448 hasConcept C70518039 @default.
- W3194948448 hasConcept C83665646 @default.
- W3194948448 hasConceptScore W3194948448C111030470 @default.
- W3194948448 hasConceptScore W3194948448C11413529 @default.
- W3194948448 hasConceptScore W3194948448C138885662 @default.