Matches in SemOpenAlex for { <https://semopenalex.org/work/W3194970147> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W3194970147 abstract "X-ray imaging in DICOM format is the most commonly used imaging modality in clinical practice, resulting in vast, non-normalized databases. This leads to an obstacle in deploying AI solutions for analyzing medical images, which often requires identifying the right body part before feeding the image into a specified AI model. This challenge raises the need for an automated and efficient approach to classifying body parts from X-ray scans. Unfortunately, to the best of our knowledge, there is no open tool or framework for this task to date. To fill this lack, we introduce a DICOM Imaging Router that deploys deep CNNs for categorizing unknown DICOM X-ray images into five anatomical groups: abdominal, adult chest, pediatric chest, spine, and others. To this end, a large-scale X-ray dataset consisting of 16,093 images has been collected and manually classified. We then trained a set of state-of-the-art deep CNNs using a training set of 11,263 images. These networks were then evaluated on an independent test set of 2,419 images and showed superior performance in classifying the body parts. Specifically, our best performing model achieved a recall of 0.982 (95% CI, 0.977-0.988), a precision of 0.985 (95% CI, 0.975-0.989) and a F1-score of 0.981 (95% CI, 0.976-0.987), whilst requiring less computation for inference (0.0295 second per image). Our external validity on 1,000 X-ray images shows the robustness of the proposed approach across hospitals. These remarkable performances indicate that deep CNNs can accurately and effectively differentiate human body parts from X-ray scans, thereby providing potential benefits for a wide range of applications in clinical settings. The dataset, codes, and trained deep learning models from this study will be made publicly available on our project website at this https URL." @default.
- W3194970147 created "2021-08-30" @default.
- W3194970147 creator A5025359636 @default.
- W3194970147 creator A5060770511 @default.
- W3194970147 creator A5065112274 @default.
- W3194970147 date "2021-08-14" @default.
- W3194970147 modified "2023-09-27" @default.
- W3194970147 title "DICOM Imaging Router: An Open Deep Learning Framework for Classification of Body Parts from DICOM X-ray Scans." @default.
- W3194970147 cites W1522301498 @default.
- W3194970147 cites W2001984413 @default.
- W3194970147 cites W2148912315 @default.
- W3194970147 cites W2194775991 @default.
- W3194970147 cites W2403164357 @default.
- W3194970147 cites W2518108298 @default.
- W3194970147 cites W2566444227 @default.
- W3194970147 cites W2612445135 @default.
- W3194970147 cites W2955425717 @default.
- W3194970147 cites W2963163009 @default.
- W3194970147 cites W2971686358 @default.
- W3194970147 cites W2986571455 @default.
- W3194970147 cites W3153424988 @default.
- W3194970147 hasPublicationYear "2021" @default.
- W3194970147 type Work @default.
- W3194970147 sameAs 3194970147 @default.
- W3194970147 citedByCount "0" @default.
- W3194970147 crossrefType "posted-content" @default.
- W3194970147 hasAuthorship W3194970147A5025359636 @default.
- W3194970147 hasAuthorship W3194970147A5060770511 @default.
- W3194970147 hasAuthorship W3194970147A5065112274 @default.
- W3194970147 hasConcept C104317684 @default.
- W3194970147 hasConcept C108583219 @default.
- W3194970147 hasConcept C154945302 @default.
- W3194970147 hasConcept C169903167 @default.
- W3194970147 hasConcept C177264268 @default.
- W3194970147 hasConcept C185592680 @default.
- W3194970147 hasConcept C199360897 @default.
- W3194970147 hasConcept C31601959 @default.
- W3194970147 hasConcept C31972630 @default.
- W3194970147 hasConcept C41008148 @default.
- W3194970147 hasConcept C55493867 @default.
- W3194970147 hasConcept C63479239 @default.
- W3194970147 hasConcept C77331912 @default.
- W3194970147 hasConceptScore W3194970147C104317684 @default.
- W3194970147 hasConceptScore W3194970147C108583219 @default.
- W3194970147 hasConceptScore W3194970147C154945302 @default.
- W3194970147 hasConceptScore W3194970147C169903167 @default.
- W3194970147 hasConceptScore W3194970147C177264268 @default.
- W3194970147 hasConceptScore W3194970147C185592680 @default.
- W3194970147 hasConceptScore W3194970147C199360897 @default.
- W3194970147 hasConceptScore W3194970147C31601959 @default.
- W3194970147 hasConceptScore W3194970147C31972630 @default.
- W3194970147 hasConceptScore W3194970147C41008148 @default.
- W3194970147 hasConceptScore W3194970147C55493867 @default.
- W3194970147 hasConceptScore W3194970147C63479239 @default.
- W3194970147 hasConceptScore W3194970147C77331912 @default.
- W3194970147 hasLocation W31949701471 @default.
- W3194970147 hasOpenAccess W3194970147 @default.
- W3194970147 hasPrimaryLocation W31949701471 @default.
- W3194970147 hasRelatedWork W116011958 @default.
- W3194970147 hasRelatedWork W1449420462 @default.
- W3194970147 hasRelatedWork W2001348844 @default.
- W3194970147 hasRelatedWork W2014918341 @default.
- W3194970147 hasRelatedWork W2301884294 @default.
- W3194970147 hasRelatedWork W2572001713 @default.
- W3194970147 hasRelatedWork W2950390322 @default.
- W3194970147 hasRelatedWork W2979564798 @default.
- W3194970147 hasRelatedWork W3024390022 @default.
- W3194970147 hasRelatedWork W3028800323 @default.
- W3194970147 hasRelatedWork W3081774900 @default.
- W3194970147 hasRelatedWork W3082261577 @default.
- W3194970147 hasRelatedWork W3090962504 @default.
- W3194970147 hasRelatedWork W3102753279 @default.
- W3194970147 hasRelatedWork W3114128166 @default.
- W3194970147 hasRelatedWork W3164895980 @default.
- W3194970147 hasRelatedWork W3195791516 @default.
- W3194970147 hasRelatedWork W3207033220 @default.
- W3194970147 hasRelatedWork W3207743553 @default.
- W3194970147 hasRelatedWork W2983610564 @default.
- W3194970147 isParatext "false" @default.
- W3194970147 isRetracted "false" @default.
- W3194970147 magId "3194970147" @default.
- W3194970147 workType "article" @default.