Matches in SemOpenAlex for { <https://semopenalex.org/work/W3194976401> ?p ?o ?g. }
- W3194976401 endingPage "115" @default.
- W3194976401 startingPage "104" @default.
- W3194976401 abstract "Bug tracking systems use repositories to keep track of the bugs to improve software quality. A manual analysis of each bug and classifying it according to its severity is an unmanageable job. Therefore, it is imperative to correctly classify the severity of a bug, which otherwise might be misclassified by a laymen user. Text mining techniques have the potential to analyze such massive databases of the textual description of bug reports to classify bug severity levels adequately. Word embedding is a state-of-art text mining technique that captures the semantics of the text and group the words according to their relevance in a document. Words are embedded into real-valued vectors through word-embedding models. Word2vec is a word embedding model, proven to be effective in representing word meanings. However, the configuration of hyperparameters and feature selection affects the performance of word2vec. Tuning hyperparameter is a time-consuming process, and it is crucial to identify the correct set of parameters. The paper outlines the effectiveness of word2vec technique on the efficiency of classifiers to predict a bug severity from a bug report and examines the impact of different averaging methods, including the configuration of word embedding parameters on the classifiers’ efficiency. Results show that the bigger window size enhances the performance of classifiers; however, the influence of the minimum word count parameter was found to be mixed and depends on the selected data sets. Further, out of the classifiers used, Random Forest and Xgboost could classify the severity level for classes with few records or a rare occurrence of words specific to each class. Otherwise, Support Vector Machine and Naive Bayes classifiers performed better and worst, respectively." @default.
- W3194976401 created "2021-08-30" @default.
- W3194976401 creator A5013436914 @default.
- W3194976401 creator A5028936264 @default.
- W3194976401 date "2021-06-01" @default.
- W3194976401 modified "2023-09-26" @default.
- W3194976401 title "Developing bug severity prediction models using word2vec" @default.
- W3194976401 cites W1501531009 @default.
- W3194976401 cites W1615991656 @default.
- W3194976401 cites W1832693441 @default.
- W3194976401 cites W1969733464 @default.
- W3194976401 cites W2005152325 @default.
- W3194976401 cites W2007960989 @default.
- W3194976401 cites W2071571931 @default.
- W3194976401 cites W2095709152 @default.
- W3194976401 cites W2099821052 @default.
- W3194976401 cites W2151595407 @default.
- W3194976401 cites W2158507316 @default.
- W3194976401 cites W2261525379 @default.
- W3194976401 cites W2290968742 @default.
- W3194976401 cites W2344541385 @default.
- W3194976401 cites W2493916176 @default.
- W3194976401 cites W2510367822 @default.
- W3194976401 cites W2591051531 @default.
- W3194976401 cites W2756108899 @default.
- W3194976401 cites W2792670840 @default.
- W3194976401 cites W2809895060 @default.
- W3194976401 cites W2869198903 @default.
- W3194976401 cites W2884803076 @default.
- W3194976401 cites W2890842468 @default.
- W3194976401 cites W2894943000 @default.
- W3194976401 cites W2897148785 @default.
- W3194976401 cites W2941547983 @default.
- W3194976401 cites W2955518678 @default.
- W3194976401 cites W2969068412 @default.
- W3194976401 cites W2981206054 @default.
- W3194976401 cites W2982119098 @default.
- W3194976401 cites W3009111612 @default.
- W3194976401 cites W3094904720 @default.
- W3194976401 cites W3102476541 @default.
- W3194976401 cites W3127587213 @default.
- W3194976401 cites W3136298603 @default.
- W3194976401 cites W3153427778 @default.
- W3194976401 cites W795486856 @default.
- W3194976401 doi "https://doi.org/10.1016/j.ijcce.2021.08.001" @default.
- W3194976401 hasPublicationYear "2021" @default.
- W3194976401 type Work @default.
- W3194976401 sameAs 3194976401 @default.
- W3194976401 citedByCount "4" @default.
- W3194976401 countsByYear W31949764012022 @default.
- W3194976401 countsByYear W31949764012023 @default.
- W3194976401 crossrefType "journal-article" @default.
- W3194976401 hasAuthorship W3194976401A5013436914 @default.
- W3194976401 hasAuthorship W3194976401A5028936264 @default.
- W3194976401 hasBestOaLocation W31949764011 @default.
- W3194976401 hasConcept C119857082 @default.
- W3194976401 hasConcept C124101348 @default.
- W3194976401 hasConcept C148483581 @default.
- W3194976401 hasConcept C154945302 @default.
- W3194976401 hasConcept C158154518 @default.
- W3194976401 hasConcept C169258074 @default.
- W3194976401 hasConcept C177264268 @default.
- W3194976401 hasConcept C17744445 @default.
- W3194976401 hasConcept C199360897 @default.
- W3194976401 hasConcept C199539241 @default.
- W3194976401 hasConcept C204321447 @default.
- W3194976401 hasConcept C2524010 @default.
- W3194976401 hasConcept C2776461190 @default.
- W3194976401 hasConcept C2777462759 @default.
- W3194976401 hasConcept C33923547 @default.
- W3194976401 hasConcept C41008148 @default.
- W3194976401 hasConcept C41608201 @default.
- W3194976401 hasConcept C66402592 @default.
- W3194976401 hasConcept C8642999 @default.
- W3194976401 hasConcept C90805587 @default.
- W3194976401 hasConceptScore W3194976401C119857082 @default.
- W3194976401 hasConceptScore W3194976401C124101348 @default.
- W3194976401 hasConceptScore W3194976401C148483581 @default.
- W3194976401 hasConceptScore W3194976401C154945302 @default.
- W3194976401 hasConceptScore W3194976401C158154518 @default.
- W3194976401 hasConceptScore W3194976401C169258074 @default.
- W3194976401 hasConceptScore W3194976401C177264268 @default.
- W3194976401 hasConceptScore W3194976401C17744445 @default.
- W3194976401 hasConceptScore W3194976401C199360897 @default.
- W3194976401 hasConceptScore W3194976401C199539241 @default.
- W3194976401 hasConceptScore W3194976401C204321447 @default.
- W3194976401 hasConceptScore W3194976401C2524010 @default.
- W3194976401 hasConceptScore W3194976401C2776461190 @default.
- W3194976401 hasConceptScore W3194976401C2777462759 @default.
- W3194976401 hasConceptScore W3194976401C33923547 @default.
- W3194976401 hasConceptScore W3194976401C41008148 @default.
- W3194976401 hasConceptScore W3194976401C41608201 @default.
- W3194976401 hasConceptScore W3194976401C66402592 @default.
- W3194976401 hasConceptScore W3194976401C8642999 @default.
- W3194976401 hasConceptScore W3194976401C90805587 @default.
- W3194976401 hasLocation W31949764011 @default.
- W3194976401 hasOpenAccess W3194976401 @default.
- W3194976401 hasPrimaryLocation W31949764011 @default.