Matches in SemOpenAlex for { <https://semopenalex.org/work/W3194982815> ?p ?o ?g. }
- W3194982815 endingPage "737367" @default.
- W3194982815 startingPage "737367" @default.
- W3194982815 abstract "Copper (Cu) is a common contaminant in water and can potentially cause hepatic tissue damage and toxicity in aquatic organisms. Herein we performed transcriptome analysis to investigate the effects of 100 μg/L and 400 μg/L Cu2+ (96-h exposure) on hepatic lipid metabolism in swamp eel (Monopterus albus). We identified 1004 and 2766 differentially expressed genes (DEGs) in the 100 and 400 μg/L Cu2+ groups, respectively. 4 up-regulated DEGs (e.g. DGAT2 and SRD5A1) and 25 down-regulated DEGs related with lipid metabolism (e.g. FABP7A, CYP51, FADS2 and ACAA2) were found in 100 μg/L Cu2+ group. In 400 μg/L Cu2+ group, 52 up-regulated lipid metabolism genes (e.g. PPARα, RXRα, ACSL4A, CPT-1, CPT-2, ACOX3, HADHA and ACADL) were identified, and 22 genes related with lipd metabolism including FABP7A, CYP51, CYP27B1, etc. were significantly down-regulated (p < 0.05). Gene ontology (GO) term and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses revealed that low concentrations of Cu (100 μg/L Cu2+) affected only few pathways, however, high concentrations of Cu (400 μg/L Cu2+) significantly affected more pathways, and peroxisome proliferator-activated receptor signaling and fatty acid degradation pathways were simultaneously in both two groups. Furthermore, upon alternative splicing analysis, we identified 55 and 81 differentially alternatively spliced (DAS) genes in the low and high concentration groups, respectively. Among these DAS genes, ACACA, DEGS2 and ST3GAL3 were associated with lipid metabolic process and fatty acid biosynthesis. The expression levels of 11 DEGs related to fatty acid degradation were validated by quantitative real-time PCR with significant up-regulation in 400 μg/L Cu2+ group, and the DAS gene of skipping exon 29 in ACACA which involved in fatty acid biosynthesis was validated by semiquantitative PCR. These results suggest that high Cu concentration (400 μg/L Cu2+) might reduce fatty acid deposition in swamp eel livers. To summarize, the genes and pathways identified herein should further our understanding of the mechanisms underlying Cu-induced lipid metabolism disorder. Furthermore, the present study highlights the importance of alternative splicing analysis, in tandem with gene expression surveys, to characterize molecular pathways in environmental studies." @default.
- W3194982815 created "2021-08-30" @default.
- W3194982815 creator A5014802136 @default.
- W3194982815 creator A5028202462 @default.
- W3194982815 creator A5030003328 @default.
- W3194982815 creator A5040647242 @default.
- W3194982815 creator A5065393214 @default.
- W3194982815 date "2022-01-01" @default.
- W3194982815 modified "2023-09-23" @default.
- W3194982815 title "Integrative analyses of gene expression and alternative splicing to gain insights into the effects of copper on hepatic lipid metabolism in swamp eel (Monopterus albus)" @default.
- W3194982815 cites W1484473034 @default.
- W3194982815 cites W1539528380 @default.
- W3194982815 cites W1963979217 @default.
- W3194982815 cites W1968375269 @default.
- W3194982815 cites W1976450362 @default.
- W3194982815 cites W1978125779 @default.
- W3194982815 cites W1981509058 @default.
- W3194982815 cites W1982040110 @default.
- W3194982815 cites W1985092163 @default.
- W3194982815 cites W2013859025 @default.
- W3194982815 cites W2015759207 @default.
- W3194982815 cites W2015832516 @default.
- W3194982815 cites W2018608365 @default.
- W3194982815 cites W2027874598 @default.
- W3194982815 cites W2037787227 @default.
- W3194982815 cites W2053004737 @default.
- W3194982815 cites W2059913612 @default.
- W3194982815 cites W2060948257 @default.
- W3194982815 cites W2066231767 @default.
- W3194982815 cites W2067942093 @default.
- W3194982815 cites W2068470744 @default.
- W3194982815 cites W2070327017 @default.
- W3194982815 cites W2071561398 @default.
- W3194982815 cites W2077689651 @default.
- W3194982815 cites W2081745487 @default.
- W3194982815 cites W2105434771 @default.
- W3194982815 cites W2108801572 @default.
- W3194982815 cites W2108988720 @default.
- W3194982815 cites W2110284555 @default.
- W3194982815 cites W2127482597 @default.
- W3194982815 cites W2141458291 @default.
- W3194982815 cites W2147472871 @default.
- W3194982815 cites W2166793470 @default.
- W3194982815 cites W2179438025 @default.
- W3194982815 cites W2291858536 @default.
- W3194982815 cites W2531851583 @default.
- W3194982815 cites W2563339645 @default.
- W3194982815 cites W2589823629 @default.
- W3194982815 cites W2601241995 @default.
- W3194982815 cites W2602059628 @default.
- W3194982815 cites W2621124775 @default.
- W3194982815 cites W2757556685 @default.
- W3194982815 cites W2766883163 @default.
- W3194982815 cites W2806338663 @default.
- W3194982815 cites W2809679140 @default.
- W3194982815 cites W2855718499 @default.
- W3194982815 cites W2884222613 @default.
- W3194982815 cites W2892943615 @default.
- W3194982815 cites W2900236819 @default.
- W3194982815 cites W2904595858 @default.
- W3194982815 cites W2911903958 @default.
- W3194982815 cites W2916812751 @default.
- W3194982815 cites W2917111047 @default.
- W3194982815 cites W2939522121 @default.
- W3194982815 cites W2948102341 @default.
- W3194982815 cites W2951184522 @default.
- W3194982815 cites W2952244605 @default.
- W3194982815 cites W2977380244 @default.
- W3194982815 cites W2999682616 @default.
- W3194982815 cites W3004800862 @default.
- W3194982815 cites W3008920620 @default.
- W3194982815 cites W3009046068 @default.
- W3194982815 cites W3010752748 @default.
- W3194982815 cites W3012408742 @default.
- W3194982815 cites W3033342781 @default.
- W3194982815 cites W3037292914 @default.
- W3194982815 cites W3042475334 @default.
- W3194982815 cites W3049236632 @default.
- W3194982815 cites W3101269865 @default.
- W3194982815 cites W3108177721 @default.
- W3194982815 cites W3110516299 @default.
- W3194982815 cites W334349840 @default.
- W3194982815 cites W365221477 @default.
- W3194982815 cites W998118555 @default.
- W3194982815 doi "https://doi.org/10.1016/j.aquaculture.2021.737367" @default.
- W3194982815 hasPublicationYear "2022" @default.
- W3194982815 type Work @default.
- W3194982815 sameAs 3194982815 @default.
- W3194982815 citedByCount "6" @default.
- W3194982815 countsByYear W31949828152022 @default.
- W3194982815 countsByYear W31949828152023 @default.
- W3194982815 crossrefType "journal-article" @default.
- W3194982815 hasAuthorship W3194982815A5014802136 @default.
- W3194982815 hasAuthorship W3194982815A5028202462 @default.
- W3194982815 hasAuthorship W3194982815A5030003328 @default.
- W3194982815 hasAuthorship W3194982815A5040647242 @default.
- W3194982815 hasAuthorship W3194982815A5065393214 @default.
- W3194982815 hasConcept C104317684 @default.