Matches in SemOpenAlex for { <https://semopenalex.org/work/W3195032234> ?p ?o ?g. }
- W3195032234 endingPage "22" @default.
- W3195032234 startingPage "1" @default.
- W3195032234 abstract "The prediction of express delivery sequence, i.e., modeling and estimating the volumes of daily incoming and outgoing parcels for delivery, is critical for online business, logistics, and positive customer experience, and specifically for resource allocation optimization and promotional activity arrangement. A precise estimate of consumer delivery requests has to involve sequential factors such as shopping behaviors, weather conditions, events, business campaigns, and their couplings. Despite that various methods have integrated external features to enhance the effects, extant works fail to address complex feature-sequence couplings in the following aspects: weaken the inter-dependencies when processing heterogeneous data and ignore the cumulative and evolving situation of coupling relationships. To address these issues, we propose DeepExpress—a deep-learning-based express delivery sequence prediction model, which extends the classic seq2seq framework to learn feature-sequence couplings. DeepExpress leverages an express delivery seq2seq learning, a carefully designed heterogeneous feature representation, and a novel joint training attention mechanism to adaptively handle heterogeneity issues and capture feature-sequence couplings for accurate prediction. Experimental results on real-world data demonstrate that the proposed method outperforms both shallow and deep baseline models." @default.
- W3195032234 created "2021-08-30" @default.
- W3195032234 creator A5017100408 @default.
- W3195032234 creator A5041555557 @default.
- W3195032234 creator A5049531727 @default.
- W3195032234 creator A5057282370 @default.
- W3195032234 creator A5075054211 @default.
- W3195032234 creator A5083721861 @default.
- W3195032234 date "2022-09-22" @default.
- W3195032234 modified "2023-10-16" @default.
- W3195032234 title "DeepExpress: Heterogeneous and Coupled Sequence Modeling for Express Delivery Prediction" @default.
- W3195032234 cites W1968653128 @default.
- W3195032234 cites W2013619732 @default.
- W3195032234 cites W2067688816 @default.
- W3195032234 cites W2072428235 @default.
- W3195032234 cites W2105896409 @default.
- W3195032234 cites W2112738128 @default.
- W3195032234 cites W2133904945 @default.
- W3195032234 cites W2524215529 @default.
- W3195032234 cites W2528639018 @default.
- W3195032234 cites W2541929603 @default.
- W3195032234 cites W2590281195 @default.
- W3195032234 cites W2747599906 @default.
- W3195032234 cites W2783777501 @default.
- W3195032234 cites W2788114581 @default.
- W3195032234 cites W2808377988 @default.
- W3195032234 cites W2808490894 @default.
- W3195032234 cites W2808535700 @default.
- W3195032234 cites W2808862972 @default.
- W3195032234 cites W2811024573 @default.
- W3195032234 cites W2890096158 @default.
- W3195032234 cites W2890930773 @default.
- W3195032234 cites W2903871660 @default.
- W3195032234 cites W2904449562 @default.
- W3195032234 cites W2904832339 @default.
- W3195032234 cites W2907002026 @default.
- W3195032234 cites W2908503141 @default.
- W3195032234 cites W2910892140 @default.
- W3195032234 cites W2911432088 @default.
- W3195032234 cites W2950817888 @default.
- W3195032234 cites W2952734551 @default.
- W3195032234 cites W2963311488 @default.
- W3195032234 cites W2966076119 @default.
- W3195032234 cites W2966153025 @default.
- W3195032234 cites W2977251608 @default.
- W3195032234 cites W2980387459 @default.
- W3195032234 cites W2997513934 @default.
- W3195032234 cites W2998196302 @default.
- W3195032234 cites W3011902235 @default.
- W3195032234 cites W3012562343 @default.
- W3195032234 cites W3033188742 @default.
- W3195032234 cites W3034548041 @default.
- W3195032234 cites W3036125691 @default.
- W3195032234 cites W3080253043 @default.
- W3195032234 cites W3080466448 @default.
- W3195032234 cites W3101687079 @default.
- W3195032234 cites W3102476541 @default.
- W3195032234 cites W3156287058 @default.
- W3195032234 cites W3156972038 @default.
- W3195032234 cites W3166508292 @default.
- W3195032234 cites W3169450514 @default.
- W3195032234 cites W3176196442 @default.
- W3195032234 cites W3201741216 @default.
- W3195032234 cites W4230950095 @default.
- W3195032234 doi "https://doi.org/10.1145/3526087" @default.
- W3195032234 hasPublicationYear "2022" @default.
- W3195032234 type Work @default.
- W3195032234 sameAs 3195032234 @default.
- W3195032234 citedByCount "1" @default.
- W3195032234 countsByYear W31950322342023 @default.
- W3195032234 crossrefType "journal-article" @default.
- W3195032234 hasAuthorship W3195032234A5017100408 @default.
- W3195032234 hasAuthorship W3195032234A5041555557 @default.
- W3195032234 hasAuthorship W3195032234A5049531727 @default.
- W3195032234 hasAuthorship W3195032234A5057282370 @default.
- W3195032234 hasAuthorship W3195032234A5075054211 @default.
- W3195032234 hasAuthorship W3195032234A5083721861 @default.
- W3195032234 hasBestOaLocation W31950322342 @default.
- W3195032234 hasConcept C108583219 @default.
- W3195032234 hasConcept C111368507 @default.
- W3195032234 hasConcept C119857082 @default.
- W3195032234 hasConcept C124101348 @default.
- W3195032234 hasConcept C12725497 @default.
- W3195032234 hasConcept C127313418 @default.
- W3195032234 hasConcept C138885662 @default.
- W3195032234 hasConcept C154945302 @default.
- W3195032234 hasConcept C162324750 @default.
- W3195032234 hasConcept C17744445 @default.
- W3195032234 hasConcept C178300618 @default.
- W3195032234 hasConcept C187736073 @default.
- W3195032234 hasConcept C199539241 @default.
- W3195032234 hasConcept C2776359362 @default.
- W3195032234 hasConcept C2776401178 @default.
- W3195032234 hasConcept C2778112365 @default.
- W3195032234 hasConcept C2780451532 @default.
- W3195032234 hasConcept C35639132 @default.
- W3195032234 hasConcept C41008148 @default.
- W3195032234 hasConcept C41895202 @default.