Matches in SemOpenAlex for { <https://semopenalex.org/work/W3195045120> ?p ?o ?g. }
- W3195045120 endingPage "375" @default.
- W3195045120 startingPage "364" @default.
- W3195045120 abstract "A large database is desired for machine learning (ML) technology to make accurate predictions of materials physicochemical properties based on their molecular structure. When a large database is not available, the development of proper featurization method based on physicochemical nature of target proprieties can improve the predictive power of ML models with a smaller database. In this work, we show that two new featurization methods, volume occupation spatial matrix and heat contribution spatial matrix, can improve the accuracy in predicting energetic materials’ crystal density (ρcrystal) and solid phase enthalpy of formation (Hf,solid) using a database containing 451 energetic molecules. Their mean absolute errors are reduced from 0.048 g/cm3 and 24.67 kcal/mol to 0.035 g/cm3 and 9.66 kcal/mol, respectively. By leave-one-out-cross-validation, the newly developed ML models can be used to determine the performance of most kinds of energetic materials except cubanes. Our ML models are applied to predict ρcrystal and Hf,solid of CHON-based molecules of the 150 million sized PubChem database, and screened out 56 candidates with competitive detonation performance and reasonable chemical structures. With further improvement in future, spatial matrices have the potential of becoming multifunctional ML simulation tools that could provide even better predictions in wider fields of materials science." @default.
- W3195045120 created "2021-08-30" @default.
- W3195045120 creator A5015890685 @default.
- W3195045120 creator A5021581740 @default.
- W3195045120 creator A5066068794 @default.
- W3195045120 creator A5074258793 @default.
- W3195045120 creator A5075959791 @default.
- W3195045120 creator A5077719006 @default.
- W3195045120 creator A5082791177 @default.
- W3195045120 date "2021-12-01" @default.
- W3195045120 modified "2023-09-25" @default.
- W3195045120 title "Accurate machine learning models based on small dataset of energetic materials through spatial matrix featurization methods" @default.
- W3195045120 cites W1531674615 @default.
- W3195045120 cites W1625352935 @default.
- W3195045120 cites W1865667476 @default.
- W3195045120 cites W1967780388 @default.
- W3195045120 cites W1971044734 @default.
- W3195045120 cites W1981368803 @default.
- W3195045120 cites W1983376452 @default.
- W3195045120 cites W2004752752 @default.
- W3195045120 cites W2008737473 @default.
- W3195045120 cites W2011602559 @default.
- W3195045120 cites W2012435792 @default.
- W3195045120 cites W2015985292 @default.
- W3195045120 cites W2024294605 @default.
- W3195045120 cites W2031848293 @default.
- W3195045120 cites W2039433504 @default.
- W3195045120 cites W2083222334 @default.
- W3195045120 cites W2091981780 @default.
- W3195045120 cites W2092157292 @default.
- W3195045120 cites W2095572837 @default.
- W3195045120 cites W2096747776 @default.
- W3195045120 cites W2102246405 @default.
- W3195045120 cites W2104489082 @default.
- W3195045120 cites W2132525235 @default.
- W3195045120 cites W2132973398 @default.
- W3195045120 cites W2150697053 @default.
- W3195045120 cites W2155689569 @default.
- W3195045120 cites W2238410640 @default.
- W3195045120 cites W2284386150 @default.
- W3195045120 cites W2316416600 @default.
- W3195045120 cites W2319902168 @default.
- W3195045120 cites W2414047026 @default.
- W3195045120 cites W2593855134 @default.
- W3195045120 cites W2608561457 @default.
- W3195045120 cites W2616519837 @default.
- W3195045120 cites W2749684356 @default.
- W3195045120 cites W2759487333 @default.
- W3195045120 cites W2759817426 @default.
- W3195045120 cites W2782516741 @default.
- W3195045120 cites W2792384842 @default.
- W3195045120 cites W2802028948 @default.
- W3195045120 cites W2807640093 @default.
- W3195045120 cites W2810220676 @default.
- W3195045120 cites W2884430236 @default.
- W3195045120 cites W2891972553 @default.
- W3195045120 cites W2910222073 @default.
- W3195045120 cites W2917442361 @default.
- W3195045120 cites W2963731249 @default.
- W3195045120 cites W2963784900 @default.
- W3195045120 cites W2979795026 @default.
- W3195045120 cites W2993352815 @default.
- W3195045120 cites W3016273817 @default.
- W3195045120 cites W3033055701 @default.
- W3195045120 cites W3037165003 @default.
- W3195045120 cites W3082921705 @default.
- W3195045120 cites W3083344074 @default.
- W3195045120 cites W3094905049 @default.
- W3195045120 cites W3097122782 @default.
- W3195045120 cites W3104255923 @default.
- W3195045120 cites W3104850868 @default.
- W3195045120 doi "https://doi.org/10.1016/j.jechem.2021.08.031" @default.
- W3195045120 hasPublicationYear "2021" @default.
- W3195045120 type Work @default.
- W3195045120 sameAs 3195045120 @default.
- W3195045120 citedByCount "4" @default.
- W3195045120 countsByYear W31950451202022 @default.
- W3195045120 countsByYear W31950451202023 @default.
- W3195045120 crossrefType "journal-article" @default.
- W3195045120 hasAuthorship W3195045120A5015890685 @default.
- W3195045120 hasAuthorship W3195045120A5021581740 @default.
- W3195045120 hasAuthorship W3195045120A5066068794 @default.
- W3195045120 hasAuthorship W3195045120A5074258793 @default.
- W3195045120 hasAuthorship W3195045120A5075959791 @default.
- W3195045120 hasAuthorship W3195045120A5077719006 @default.
- W3195045120 hasAuthorship W3195045120A5082791177 @default.
- W3195045120 hasConcept C106487976 @default.
- W3195045120 hasConcept C121332964 @default.
- W3195045120 hasConcept C158180186 @default.
- W3195045120 hasConcept C178790620 @default.
- W3195045120 hasConcept C185592680 @default.
- W3195045120 hasConcept C186060115 @default.
- W3195045120 hasConcept C192562407 @default.
- W3195045120 hasConcept C199360897 @default.
- W3195045120 hasConcept C2781285689 @default.
- W3195045120 hasConcept C3288061 @default.
- W3195045120 hasConcept C32909587 @default.
- W3195045120 hasConcept C41008148 @default.