Matches in SemOpenAlex for { <https://semopenalex.org/work/W3195065362> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W3195065362 abstract "Abstract Parkinson's disease is a degenerative disease that leads to brain disorder and nonfunctioning of different body parts. Deep learning tools like artificial neural network (ANN), convolution neural network (CNN), regression Analysis (RA), and so on, has been considered to a great extent in recent days. Several data sets based on the motor and nonmotor symptoms are applied to different classifier for correct identification of Parkinson's patient from healthy people. In this paper, hybridization of two deep learning tools such as, RA and ANN are done for effective diagnosis of the disease by probability estimation. The communal merits of individual approaches of the existing approaches are realized in this context for accurate probability estimation. Data preprocessing and probability estimation of preprocessed data is done in RA. The second existing approach is used to identify the PD patient by comparing with a predefined threshold value of a neuron. The estimation is performed on the data set of speech recognition, iron content, and pulse rate among a group of people. The proposed approach is compared with the existing approaches like, SVM and k‐NN classifier. The computed result reveals the superiority of the proposed algorithm with 93.46% accuracy." @default.
- W3195065362 created "2021-08-30" @default.
- W3195065362 creator A5004237841 @default.
- W3195065362 creator A5005615627 @default.
- W3195065362 creator A5028522560 @default.
- W3195065362 creator A5046289188 @default.
- W3195065362 creator A5049022704 @default.
- W3195065362 creator A5056947183 @default.
- W3195065362 date "2021-08-16" @default.
- W3195065362 modified "2023-10-17" @default.
- W3195065362 title "Efficient detection of Parkinson's disease using deep learning techniques over medical data" @default.
- W3195065362 cites W1997147102 @default.
- W3195065362 cites W2029474945 @default.
- W3195065362 cites W2031547184 @default.
- W3195065362 cites W2032655680 @default.
- W3195065362 cites W2037984755 @default.
- W3195065362 cites W2038190285 @default.
- W3195065362 cites W2085860780 @default.
- W3195065362 cites W2306329751 @default.
- W3195065362 cites W2339549526 @default.
- W3195065362 cites W2579747565 @default.
- W3195065362 cites W2584311212 @default.
- W3195065362 cites W2602056972 @default.
- W3195065362 cites W2618058430 @default.
- W3195065362 cites W2761197040 @default.
- W3195065362 cites W2766367589 @default.
- W3195065362 cites W2805394410 @default.
- W3195065362 cites W2883558452 @default.
- W3195065362 cites W2883729373 @default.
- W3195065362 cites W2889245000 @default.
- W3195065362 cites W2895530851 @default.
- W3195065362 cites W2896005661 @default.
- W3195065362 cites W2901519529 @default.
- W3195065362 cites W2923463496 @default.
- W3195065362 cites W2947966619 @default.
- W3195065362 cites W2953357735 @default.
- W3195065362 cites W2999579305 @default.
- W3195065362 cites W3017160931 @default.
- W3195065362 cites W3021883287 @default.
- W3195065362 cites W3106962825 @default.
- W3195065362 cites W4244095909 @default.
- W3195065362 doi "https://doi.org/10.1111/exsy.12787" @default.
- W3195065362 hasPublicationYear "2021" @default.
- W3195065362 type Work @default.
- W3195065362 sameAs 3195065362 @default.
- W3195065362 citedByCount "22" @default.
- W3195065362 countsByYear W31950653622022 @default.
- W3195065362 countsByYear W31950653622023 @default.
- W3195065362 crossrefType "journal-article" @default.
- W3195065362 hasAuthorship W3195065362A5004237841 @default.
- W3195065362 hasAuthorship W3195065362A5005615627 @default.
- W3195065362 hasAuthorship W3195065362A5028522560 @default.
- W3195065362 hasAuthorship W3195065362A5046289188 @default.
- W3195065362 hasAuthorship W3195065362A5049022704 @default.
- W3195065362 hasAuthorship W3195065362A5056947183 @default.
- W3195065362 hasConcept C108583219 @default.
- W3195065362 hasConcept C119857082 @default.
- W3195065362 hasConcept C12267149 @default.
- W3195065362 hasConcept C153180895 @default.
- W3195065362 hasConcept C154945302 @default.
- W3195065362 hasConcept C34736171 @default.
- W3195065362 hasConcept C41008148 @default.
- W3195065362 hasConcept C50644808 @default.
- W3195065362 hasConcept C81363708 @default.
- W3195065362 hasConcept C95623464 @default.
- W3195065362 hasConceptScore W3195065362C108583219 @default.
- W3195065362 hasConceptScore W3195065362C119857082 @default.
- W3195065362 hasConceptScore W3195065362C12267149 @default.
- W3195065362 hasConceptScore W3195065362C153180895 @default.
- W3195065362 hasConceptScore W3195065362C154945302 @default.
- W3195065362 hasConceptScore W3195065362C34736171 @default.
- W3195065362 hasConceptScore W3195065362C41008148 @default.
- W3195065362 hasConceptScore W3195065362C50644808 @default.
- W3195065362 hasConceptScore W3195065362C81363708 @default.
- W3195065362 hasConceptScore W3195065362C95623464 @default.
- W3195065362 hasIssue "3" @default.
- W3195065362 hasLocation W31950653621 @default.
- W3195065362 hasOpenAccess W3195065362 @default.
- W3195065362 hasPrimaryLocation W31950653621 @default.
- W3195065362 hasRelatedWork W2731899572 @default.
- W3195065362 hasRelatedWork W2999805992 @default.
- W3195065362 hasRelatedWork W3116150086 @default.
- W3195065362 hasRelatedWork W3133861977 @default.
- W3195065362 hasRelatedWork W3208266890 @default.
- W3195065362 hasRelatedWork W4200173597 @default.
- W3195065362 hasRelatedWork W4312417841 @default.
- W3195065362 hasRelatedWork W4321369474 @default.
- W3195065362 hasRelatedWork W4380075502 @default.
- W3195065362 hasRelatedWork W1858454510 @default.
- W3195065362 hasVolume "39" @default.
- W3195065362 isParatext "false" @default.
- W3195065362 isRetracted "false" @default.
- W3195065362 magId "3195065362" @default.
- W3195065362 workType "article" @default.