Matches in SemOpenAlex for { <https://semopenalex.org/work/W3195116816> ?p ?o ?g. }
- W3195116816 abstract "Integration of different models may improve the performance of landslide susceptibility assessment, but few studies have tested it. The present study aims at exploring the way to integrating different models and comparing the results among integrated and individual models. Our objective is to answer this question: Will the integrated model have higher accuracy compared with individual model? The Lvliang mountains area, a landslide-prone area in China, was taken as the study area, and ten factors were considered in the influencing factors system. Three basic machine learning models (the back propagation (BP), support vector machine (SVM), and random forest (RF) models) were integrated by an objective function where the weight coefficients among different models were computed by the gray wolf optimization (GWO) algorithm. 80 and 20% of the landslide data were randomly selected as the training and testing samples, respectively, and different landslide susceptibility maps were generated based on the GIS platform. The results illustrated that the accuracy expressed by the area under the receiver operating characteristic curve (AUC) of the BP-SVM-RF integrated model was the highest (0.7898), which was better than that of the BP (0.6929), SVM (0.6582), RF (0.7258), BP-SVM (0.7360), BP-RF (0.7569), and SVM-RF models (0.7298). The experimental results authenticated the effectiveness of the BP-SVM-RF method, which can be a reliable model for the regional landslide susceptibility assessment of the study area. Moreover, the proposed procedure can be a good option to integrate different models to seek an “optimal” result." @default.
- W3195116816 created "2021-08-30" @default.
- W3195116816 creator A5001522611 @default.
- W3195116816 creator A5022406060 @default.
- W3195116816 creator A5031577240 @default.
- W3195116816 creator A5069381610 @default.
- W3195116816 creator A5082633378 @default.
- W3195116816 creator A5090859671 @default.
- W3195116816 date "2021-08-17" @default.
- W3195116816 modified "2023-09-27" @default.
- W3195116816 title "Large-Scale Landslide Susceptibility Mapping Using an Integrated Machine Learning Model: A Case Study in the Lvliang Mountains of China" @default.
- W3195116816 cites W1098602565 @default.
- W3195116816 cites W1967253474 @default.
- W3195116816 cites W1970450173 @default.
- W3195116816 cites W1988650824 @default.
- W3195116816 cites W2002302337 @default.
- W3195116816 cites W2017363733 @default.
- W3195116816 cites W2040384416 @default.
- W3195116816 cites W2049323155 @default.
- W3195116816 cites W2049466036 @default.
- W3195116816 cites W2053449690 @default.
- W3195116816 cites W2054512946 @default.
- W3195116816 cites W2063987149 @default.
- W3195116816 cites W2069256114 @default.
- W3195116816 cites W2071968219 @default.
- W3195116816 cites W2080134555 @default.
- W3195116816 cites W2089314377 @default.
- W3195116816 cites W2105639704 @default.
- W3195116816 cites W2105714409 @default.
- W3195116816 cites W2117350110 @default.
- W3195116816 cites W2137486440 @default.
- W3195116816 cites W2147555471 @default.
- W3195116816 cites W2244634509 @default.
- W3195116816 cites W2287788949 @default.
- W3195116816 cites W2489814317 @default.
- W3195116816 cites W2519746072 @default.
- W3195116816 cites W2528753685 @default.
- W3195116816 cites W2552984579 @default.
- W3195116816 cites W2567326027 @default.
- W3195116816 cites W2586530791 @default.
- W3195116816 cites W2591848569 @default.
- W3195116816 cites W2594255262 @default.
- W3195116816 cites W2599500356 @default.
- W3195116816 cites W2606572359 @default.
- W3195116816 cites W2731040012 @default.
- W3195116816 cites W2771104803 @default.
- W3195116816 cites W2788433893 @default.
- W3195116816 cites W2793831793 @default.
- W3195116816 cites W2799444970 @default.
- W3195116816 cites W2802780461 @default.
- W3195116816 cites W2804702973 @default.
- W3195116816 cites W2808860853 @default.
- W3195116816 cites W2896226023 @default.
- W3195116816 cites W2898517807 @default.
- W3195116816 cites W2903546516 @default.
- W3195116816 cites W2919460584 @default.
- W3195116816 cites W2964189737 @default.
- W3195116816 cites W2972972597 @default.
- W3195116816 cites W2979806575 @default.
- W3195116816 cites W2996693343 @default.
- W3195116816 cites W3004932743 @default.
- W3195116816 cites W3009636339 @default.
- W3195116816 cites W3014673353 @default.
- W3195116816 cites W3032913569 @default.
- W3195116816 cites W3040332201 @default.
- W3195116816 cites W3085034080 @default.
- W3195116816 cites W3125937743 @default.
- W3195116816 cites W3129838958 @default.
- W3195116816 cites W3170215261 @default.
- W3195116816 cites W4245444932 @default.
- W3195116816 cites W4248497251 @default.
- W3195116816 doi "https://doi.org/10.3389/feart.2021.722491" @default.
- W3195116816 hasPublicationYear "2021" @default.
- W3195116816 type Work @default.
- W3195116816 sameAs 3195116816 @default.
- W3195116816 citedByCount "18" @default.
- W3195116816 countsByYear W31951168162021 @default.
- W3195116816 countsByYear W31951168162022 @default.
- W3195116816 countsByYear W31951168162023 @default.
- W3195116816 crossrefType "journal-article" @default.
- W3195116816 hasAuthorship W3195116816A5001522611 @default.
- W3195116816 hasAuthorship W3195116816A5022406060 @default.
- W3195116816 hasAuthorship W3195116816A5031577240 @default.
- W3195116816 hasAuthorship W3195116816A5069381610 @default.
- W3195116816 hasAuthorship W3195116816A5082633378 @default.
- W3195116816 hasAuthorship W3195116816A5090859671 @default.
- W3195116816 hasBestOaLocation W31951168161 @default.
- W3195116816 hasConcept C119857082 @default.
- W3195116816 hasConcept C12267149 @default.
- W3195116816 hasConcept C124101348 @default.
- W3195116816 hasConcept C127313418 @default.
- W3195116816 hasConcept C154945302 @default.
- W3195116816 hasConcept C169258074 @default.
- W3195116816 hasConcept C186295008 @default.
- W3195116816 hasConcept C187320778 @default.
- W3195116816 hasConcept C205649164 @default.
- W3195116816 hasConcept C2778755073 @default.
- W3195116816 hasConcept C41008148 @default.
- W3195116816 hasConcept C58471807 @default.
- W3195116816 hasConcept C58640448 @default.