Matches in SemOpenAlex for { <https://semopenalex.org/work/W3195120494> ?p ?o ?g. }
- W3195120494 endingPage "317" @default.
- W3195120494 startingPage "304" @default.
- W3195120494 abstract "In order to repair an osteochondral defect, it is critical to advance a bi-lineage constructive scaffold with gradient transition. In this study, we developed a simple and straightforward approach for fabricating a multi-domain gel scaffold through the assembly/disassembly of low-molecular-weight gels (LMWGs) inside a stable PEGDA network by photopolymerization. The versatility of this technology enabled to vary biological, topological, and mechanical properties through material selection and to generate a chondrogenic-osteogenic gradient transition. The multi-domain gel exhibited an increasing stiffness gradient along the longitudinal direction from the cartilage layer at approximately 20 kPa to the bone layer at approximately 300 kPa as well as spatial variation at the gradient interface. Moreover, the transitional layer with a condensed structure and intermediate stiffness prevented delamination of the contrasting layers and maintained microenvironmental differences in the upper and lower layers. The in vitro results indicated that each domain had an individual capacity to spatially control the differentiation of MSCs toward osteoblastic lineage and chondrocytic lineage. This was mainly because the mechanical and topographical cues from the respective domains played an important role in modulating the Rho-ROCK signaling pathway, whereas the blockage of ROCK signals significantly impaired domain-modulated osteogenesis and enhanced chondrogenesis. Additionally, the quantity and quality of osteochondral repair were evaluated at 4 and 8 weeks through histological analysis and micro-computed tomography (micro-CT). The results indicated that the multi-domain gels distinctly improved the regeneration of subchondral bone and cartilage tissues. Overall, the outcomes of this study can motivate future bioinspired gradient and heterogeneity strategies for osteochondral tissue regeneration. The regeneration of osteochondral defects remains a major challenge due to the complexity of osteochondral structure and the limited self-repair capacity of cartilage. The gradient design to mimic the transition between the calcified cartilage and the subchondral bone plate as well as the zones of cartilage is an effective strategy. In this study, controlled multi-domain gels were fabricated through the assembly/disassembly of low-molecular-weight gels inside a stable PEGDA network by photopolymerization. The prepared multi-domain gels showed a chondrogenic-osteogenic gradient transition, which decreased the possibility of delamination and stimulated osteochondral tissue regeneration in vivo. Overall, our study promotes new strategies of bioinspired gradients and heterogeneities for more challenging applications." @default.
- W3195120494 created "2021-08-30" @default.
- W3195120494 creator A5000970532 @default.
- W3195120494 creator A5002446862 @default.
- W3195120494 creator A5041756753 @default.
- W3195120494 creator A5085863791 @default.
- W3195120494 creator A5087282504 @default.
- W3195120494 date "2021-11-01" @default.
- W3195120494 modified "2023-10-16" @default.
- W3195120494 title "Controlled domain gels with a biomimetic gradient environment for osteochondral tissue regeneration" @default.
- W3195120494 cites W1464636441 @default.
- W3195120494 cites W1779556124 @default.
- W3195120494 cites W1862462535 @default.
- W3195120494 cites W1923789136 @default.
- W3195120494 cites W1975425673 @default.
- W3195120494 cites W2003170879 @default.
- W3195120494 cites W2012119502 @default.
- W3195120494 cites W2037399020 @default.
- W3195120494 cites W2041401385 @default.
- W3195120494 cites W2051126612 @default.
- W3195120494 cites W2051296058 @default.
- W3195120494 cites W2051390382 @default.
- W3195120494 cites W2067042400 @default.
- W3195120494 cites W2087721125 @default.
- W3195120494 cites W2089485530 @default.
- W3195120494 cites W2113335122 @default.
- W3195120494 cites W2135073071 @default.
- W3195120494 cites W2144023435 @default.
- W3195120494 cites W2154015882 @default.
- W3195120494 cites W2167243609 @default.
- W3195120494 cites W2171302612 @default.
- W3195120494 cites W2218826205 @default.
- W3195120494 cites W2252889477 @default.
- W3195120494 cites W2254555796 @default.
- W3195120494 cites W2287193447 @default.
- W3195120494 cites W2316626163 @default.
- W3195120494 cites W2329011674 @default.
- W3195120494 cites W2462116416 @default.
- W3195120494 cites W2497121265 @default.
- W3195120494 cites W2518102391 @default.
- W3195120494 cites W2522694580 @default.
- W3195120494 cites W2526145369 @default.
- W3195120494 cites W2532200880 @default.
- W3195120494 cites W2547581431 @default.
- W3195120494 cites W2586499858 @default.
- W3195120494 cites W2609967765 @default.
- W3195120494 cites W2613275913 @default.
- W3195120494 cites W2761181567 @default.
- W3195120494 cites W2767569544 @default.
- W3195120494 cites W2767923027 @default.
- W3195120494 cites W2792255758 @default.
- W3195120494 cites W2792328436 @default.
- W3195120494 cites W2792957590 @default.
- W3195120494 cites W2800024151 @default.
- W3195120494 cites W2802715494 @default.
- W3195120494 cites W2803619402 @default.
- W3195120494 cites W2806378805 @default.
- W3195120494 cites W2810116542 @default.
- W3195120494 cites W2854429444 @default.
- W3195120494 cites W2859280788 @default.
- W3195120494 cites W2880717337 @default.
- W3195120494 cites W2883311538 @default.
- W3195120494 cites W2883413016 @default.
- W3195120494 cites W2887518040 @default.
- W3195120494 cites W2887939231 @default.
- W3195120494 cites W2893690831 @default.
- W3195120494 cites W2896226511 @default.
- W3195120494 cites W2906719864 @default.
- W3195120494 cites W2954251291 @default.
- W3195120494 cites W2958369963 @default.
- W3195120494 cites W2959527885 @default.
- W3195120494 cites W3003004354 @default.
- W3195120494 cites W3017388152 @default.
- W3195120494 cites W3033225111 @default.
- W3195120494 cites W3086158676 @default.
- W3195120494 doi "https://doi.org/10.1016/j.actbio.2021.08.029" @default.
- W3195120494 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34454084" @default.
- W3195120494 hasPublicationYear "2021" @default.
- W3195120494 type Work @default.
- W3195120494 sameAs 3195120494 @default.
- W3195120494 citedByCount "7" @default.
- W3195120494 countsByYear W31951204942022 @default.
- W3195120494 countsByYear W31951204942023 @default.
- W3195120494 crossrefType "journal-article" @default.
- W3195120494 hasAuthorship W3195120494A5000970532 @default.
- W3195120494 hasAuthorship W3195120494A5002446862 @default.
- W3195120494 hasAuthorship W3195120494A5041756753 @default.
- W3195120494 hasAuthorship W3195120494A5085863791 @default.
- W3195120494 hasAuthorship W3195120494A5087282504 @default.
- W3195120494 hasConcept C105702510 @default.
- W3195120494 hasConcept C12554922 @default.
- W3195120494 hasConcept C136229726 @default.
- W3195120494 hasConcept C159985019 @default.
- W3195120494 hasConcept C171056886 @default.
- W3195120494 hasConcept C192562407 @default.
- W3195120494 hasConcept C2779372316 @default.
- W3195120494 hasConcept C2780550940 @default.
- W3195120494 hasConcept C35496256 @default.