Matches in SemOpenAlex for { <https://semopenalex.org/work/W3195156655> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W3195156655 endingPage "277" @default.
- W3195156655 startingPage "251" @default.
- W3195156655 abstract "The kidney is a vital organ of the body. The function of kidney is to filter the blood in the body. When the kidneys filter blood, urine is made from excess and excess fluid in the body. The kidneys process waste, excess salt, and urea (nitrogenous wastes produced during the body's metabolic processes), regulate body fluids, blood pressure, and blood levels, and also regulate salt levels, maintaining the concentration of sodium, potassium, and phosphorus in the blood cells and minerals such as blood. Kidney failure occurs when the kidneys are not functioning properly. Kidney failure can have a profound effect on body health. Chronic kidney failure is a progressive kidney loss that includes uremia (urea and other nitrogenous residues in the blood) and can be fatal and cause other problems if there is no dialysis or kidney transplantation. An effort to determine the symptoms of kidney failure as early as possible is needed by a decision support system that can make decisions of chronic kidney disease. Large data can be used to explore patterns or knowledge using data mining methods. Machine learning techniques, for example, clustering, classification, and so on, are utilized to discover examples and information connections among an enormous arrangement of components and to manufacture dependable prediction models dependent on information input gave. These machine learning processes are carried out to produce valuable knowledge which will then be implemented into a decision support system application. In the field of health, machine learning has been used for diagnosis and prognosis of disease as well as for predicting the results of medical procedures." @default.
- W3195156655 created "2021-08-30" @default.
- W3195156655 creator A5057410588 @default.
- W3195156655 creator A5061510260 @default.
- W3195156655 date "2021-07-30" @default.
- W3195156655 modified "2023-10-12" @default.
- W3195156655 title "Predicting Chronic Kidney Disease Using Machine Learning" @default.
- W3195156655 cites W131665154 @default.
- W3195156655 cites W1874842075 @default.
- W3195156655 cites W1963595592 @default.
- W3195156655 cites W1980085292 @default.
- W3195156655 cites W1983719202 @default.
- W3195156655 cites W2016691649 @default.
- W3195156655 cites W2018901137 @default.
- W3195156655 cites W2030379064 @default.
- W3195156655 cites W2068451972 @default.
- W3195156655 cites W2100189198 @default.
- W3195156655 cites W2107538404 @default.
- W3195156655 cites W2118195781 @default.
- W3195156655 cites W2123607535 @default.
- W3195156655 cites W2124242901 @default.
- W3195156655 cites W2127802406 @default.
- W3195156655 cites W2131804642 @default.
- W3195156655 cites W2146081758 @default.
- W3195156655 cites W2154394760 @default.
- W3195156655 cites W2777859943 @default.
- W3195156655 cites W3080234015 @default.
- W3195156655 doi "https://doi.org/10.1002/9781119792345.ch10" @default.
- W3195156655 hasPublicationYear "2021" @default.
- W3195156655 type Work @default.
- W3195156655 sameAs 3195156655 @default.
- W3195156655 citedByCount "1" @default.
- W3195156655 countsByYear W31951566552021 @default.
- W3195156655 crossrefType "other" @default.
- W3195156655 hasAuthorship W3195156655A5057410588 @default.
- W3195156655 hasAuthorship W3195156655A5061510260 @default.
- W3195156655 hasConcept C126322002 @default.
- W3195156655 hasConcept C128540205 @default.
- W3195156655 hasConcept C177713679 @default.
- W3195156655 hasConcept C2776635150 @default.
- W3195156655 hasConcept C2778653478 @default.
- W3195156655 hasConcept C2779978075 @default.
- W3195156655 hasConcept C2780091579 @default.
- W3195156655 hasConcept C2780303639 @default.
- W3195156655 hasConcept C41008148 @default.
- W3195156655 hasConcept C71924100 @default.
- W3195156655 hasConceptScore W3195156655C126322002 @default.
- W3195156655 hasConceptScore W3195156655C128540205 @default.
- W3195156655 hasConceptScore W3195156655C177713679 @default.
- W3195156655 hasConceptScore W3195156655C2776635150 @default.
- W3195156655 hasConceptScore W3195156655C2778653478 @default.
- W3195156655 hasConceptScore W3195156655C2779978075 @default.
- W3195156655 hasConceptScore W3195156655C2780091579 @default.
- W3195156655 hasConceptScore W3195156655C2780303639 @default.
- W3195156655 hasConceptScore W3195156655C41008148 @default.
- W3195156655 hasConceptScore W3195156655C71924100 @default.
- W3195156655 hasLocation W31951566551 @default.
- W3195156655 hasOpenAccess W3195156655 @default.
- W3195156655 hasPrimaryLocation W31951566551 @default.
- W3195156655 hasRelatedWork W2078842829 @default.
- W3195156655 hasRelatedWork W2377090421 @default.
- W3195156655 hasRelatedWork W239320962 @default.
- W3195156655 hasRelatedWork W2410021421 @default.
- W3195156655 hasRelatedWork W2412220799 @default.
- W3195156655 hasRelatedWork W2412290471 @default.
- W3195156655 hasRelatedWork W2418335388 @default.
- W3195156655 hasRelatedWork W2467524158 @default.
- W3195156655 hasRelatedWork W2470120188 @default.
- W3195156655 hasRelatedWork W2513500011 @default.
- W3195156655 isParatext "false" @default.
- W3195156655 isRetracted "false" @default.
- W3195156655 magId "3195156655" @default.
- W3195156655 workType "other" @default.