Matches in SemOpenAlex for { <https://semopenalex.org/work/W3195280213> ?p ?o ?g. }
- W3195280213 endingPage "666" @default.
- W3195280213 startingPage "635" @default.
- W3195280213 abstract "The study of optimal control problems under uncertainty plays an important role in scientific numerical simulations. This class of optimization problems is strongly utilized in engineering, biology and finance. In this paper, a stochastic gradient method is proposed for the numerical resolution of a nonconvex stochastic optimization problem on a Hilbert space. We show that, under suitable assumptions, strong or weak accumulation points of the iterates produced by the method converge almost surely to stationary points of the original optimization problem. Measurability and convergence rates of a stationarity measure are handled, filling a gap for applications to nonconvex infinite dimensional stochastic optimization problems. The method is demonstrated on an optimal control problem constrained by a class of elliptic semilinear partial differential equations (PDEs) under uncertainty." @default.
- W3195280213 created "2021-08-30" @default.
- W3195280213 creator A5033054577 @default.
- W3195280213 creator A5073357349 @default.
- W3195280213 date "2023-08-01" @default.
- W3195280213 modified "2023-09-27" @default.
- W3195280213 title "A stochastic gradient method for a class of nonlinear PDE-constrained optimal control problems under uncertainty" @default.
- W3195280213 cites W124585044 @default.
- W3195280213 cites W1519752295 @default.
- W3195280213 cites W1994616650 @default.
- W3195280213 cites W2032733195 @default.
- W3195280213 cites W2032816801 @default.
- W3195280213 cites W2053670647 @default.
- W3195280213 cites W2080335539 @default.
- W3195280213 cites W2146917784 @default.
- W3195280213 cites W2263557086 @default.
- W3195280213 cites W2806083605 @default.
- W3195280213 cites W2888812421 @default.
- W3195280213 cites W2926203989 @default.
- W3195280213 cites W2963312217 @default.
- W3195280213 cites W2963433607 @default.
- W3195280213 cites W2965558357 @default.
- W3195280213 cites W2975608980 @default.
- W3195280213 cites W3005484777 @default.
- W3195280213 cites W3086029161 @default.
- W3195280213 cites W3120044416 @default.
- W3195280213 cites W3164869052 @default.
- W3195280213 cites W4214654467 @default.
- W3195280213 cites W595079961 @default.
- W3195280213 doi "https://doi.org/10.1016/j.jde.2023.04.034" @default.
- W3195280213 hasPublicationYear "2023" @default.
- W3195280213 type Work @default.
- W3195280213 sameAs 3195280213 @default.
- W3195280213 citedByCount "0" @default.
- W3195280213 crossrefType "journal-article" @default.
- W3195280213 hasAuthorship W3195280213A5033054577 @default.
- W3195280213 hasAuthorship W3195280213A5073357349 @default.
- W3195280213 hasBestOaLocation W31952802132 @default.
- W3195280213 hasConcept C121332964 @default.
- W3195280213 hasConcept C126255220 @default.
- W3195280213 hasConcept C134306372 @default.
- W3195280213 hasConcept C137836250 @default.
- W3195280213 hasConcept C140479938 @default.
- W3195280213 hasConcept C154945302 @default.
- W3195280213 hasConcept C158622935 @default.
- W3195280213 hasConcept C162324750 @default.
- W3195280213 hasConcept C170131372 @default.
- W3195280213 hasConcept C194387892 @default.
- W3195280213 hasConcept C21031990 @default.
- W3195280213 hasConcept C2777212361 @default.
- W3195280213 hasConcept C2777303404 @default.
- W3195280213 hasConcept C28826006 @default.
- W3195280213 hasConcept C33923547 @default.
- W3195280213 hasConcept C41008148 @default.
- W3195280213 hasConcept C50522688 @default.
- W3195280213 hasConcept C51955184 @default.
- W3195280213 hasConcept C62520636 @default.
- W3195280213 hasConcept C62799726 @default.
- W3195280213 hasConcept C91575142 @default.
- W3195280213 hasConcept C93779851 @default.
- W3195280213 hasConceptScore W3195280213C121332964 @default.
- W3195280213 hasConceptScore W3195280213C126255220 @default.
- W3195280213 hasConceptScore W3195280213C134306372 @default.
- W3195280213 hasConceptScore W3195280213C137836250 @default.
- W3195280213 hasConceptScore W3195280213C140479938 @default.
- W3195280213 hasConceptScore W3195280213C154945302 @default.
- W3195280213 hasConceptScore W3195280213C158622935 @default.
- W3195280213 hasConceptScore W3195280213C162324750 @default.
- W3195280213 hasConceptScore W3195280213C170131372 @default.
- W3195280213 hasConceptScore W3195280213C194387892 @default.
- W3195280213 hasConceptScore W3195280213C21031990 @default.
- W3195280213 hasConceptScore W3195280213C2777212361 @default.
- W3195280213 hasConceptScore W3195280213C2777303404 @default.
- W3195280213 hasConceptScore W3195280213C28826006 @default.
- W3195280213 hasConceptScore W3195280213C33923547 @default.
- W3195280213 hasConceptScore W3195280213C41008148 @default.
- W3195280213 hasConceptScore W3195280213C50522688 @default.
- W3195280213 hasConceptScore W3195280213C51955184 @default.
- W3195280213 hasConceptScore W3195280213C62520636 @default.
- W3195280213 hasConceptScore W3195280213C62799726 @default.
- W3195280213 hasConceptScore W3195280213C91575142 @default.
- W3195280213 hasConceptScore W3195280213C93779851 @default.
- W3195280213 hasFunder F4320311030 @default.
- W3195280213 hasFunder F4320323718 @default.
- W3195280213 hasFunder F4320333369 @default.
- W3195280213 hasLocation W31952802131 @default.
- W3195280213 hasLocation W31952802132 @default.
- W3195280213 hasOpenAccess W3195280213 @default.
- W3195280213 hasPrimaryLocation W31952802131 @default.
- W3195280213 hasRelatedWork W1589380957 @default.
- W3195280213 hasRelatedWork W2004988401 @default.
- W3195280213 hasRelatedWork W2020701804 @default.
- W3195280213 hasRelatedWork W2024177441 @default.
- W3195280213 hasRelatedWork W2076700910 @default.
- W3195280213 hasRelatedWork W2166506088 @default.
- W3195280213 hasRelatedWork W3105847064 @default.
- W3195280213 hasRelatedWork W3194150387 @default.
- W3195280213 hasRelatedWork W4285787635 @default.