Matches in SemOpenAlex for { <https://semopenalex.org/work/W3195366917> ?p ?o ?g. }
Showing items 1 to 73 of
73
with 100 items per page.
- W3195366917 abstract "The Internet of Things (IoT) infrastructure forms a gigantic network of interconnected and interacting devices. This infrastructure involves a new generation of service delivery models, more advanced data management and policy schemes, sophisticated data analytics tools, and effective decision making applications. IoT technology brings automation to a new level wherein nodes can communicate and make autonomous decisions in the absence of human interventions. IoT enabled solutions generate and process enormous volumes of heterogeneous data exchanged among billions of nodes. This results in Big Data congestion, data management, storage issues and various inefficiencies. Fog Computing aims at solving the issues with data management as it includes intelligent computational components and storage closer to the data sources. Often, an IoT-enabled infrastructure is shared among many users with various requirements. Sharing resources, sharing operational costs and collective decision making (consensus) among many stakeholders is frequently neglected. This research addresses an essential requirement for adaptive, autonomous and consensus-based Fog computational solutions which are able to support distributed and in-network schemes and policies. These network schemes and policies need to meet the requirements of many users. In this work, innovative consensus-based computational solutions are investigated. These proposed solutions aim to correlate and organise data for effective management and decision making in Fog. Instead of individual decision making, the algorithms aim to aggregate several decisions into a consensus decision representing a collective agreement, benefiting from the individuals variant knowledge and meeting multiple stakeholders requirements. In order to validate the proposed solutions, hybrid research methodology is involved that includes the design of a test-bed and the execution of several experiments. In order to investigate the effectiveness of the paradigm, three experiments were designed and validated. Real-life sensor data and synthetic statistical data was collected, processed and analysed. Bayesian Machine Learning models and Analytics were used to consolidate the design and evaluate the performance of the algorithms. In the Fog environment, the first scenario tests the Aggregation by Distribution algorithm. The solution contribute in achieving a notable efficiency of data delivery obtained with a minimal loss in precision. The second scenario validates the merits of the approach in predicting the activities of high mobility IoT applications. The third scenario tests the applications related to smart home IoT. All proposed Consensus algorithms use statistical analysis to support effective decision making in Fog and enable data aggregation for optimal storage, data transmission, processing and analytics. The final results of all experiments showed that all the implemented consensus approaches surpass the individual ones in different performance terms. Formal results also showed that the paradigm is…" @default.
- W3195366917 created "2021-08-30" @default.
- W3195366917 creator A5013225797 @default.
- W3195366917 date "2019-01-01" @default.
- W3195366917 modified "2023-09-27" @default.
- W3195366917 title "Consensus-Based Data Management within Fog Computing For the Internet of Things" @default.
- W3195366917 hasPublicationYear "2019" @default.
- W3195366917 type Work @default.
- W3195366917 sameAs 3195366917 @default.
- W3195366917 citedByCount "0" @default.
- W3195366917 crossrefType "journal-article" @default.
- W3195366917 hasAuthorship W3195366917A5013225797 @default.
- W3195366917 hasConcept C111919701 @default.
- W3195366917 hasConcept C112930515 @default.
- W3195366917 hasConcept C115901376 @default.
- W3195366917 hasConcept C124101348 @default.
- W3195366917 hasConcept C127413603 @default.
- W3195366917 hasConcept C142724271 @default.
- W3195366917 hasConcept C144133560 @default.
- W3195366917 hasConcept C204787440 @default.
- W3195366917 hasConcept C2522767166 @default.
- W3195366917 hasConcept C2779965156 @default.
- W3195366917 hasConcept C38652104 @default.
- W3195366917 hasConcept C41008148 @default.
- W3195366917 hasConcept C71924100 @default.
- W3195366917 hasConcept C75684735 @default.
- W3195366917 hasConcept C78519656 @default.
- W3195366917 hasConcept C79158427 @default.
- W3195366917 hasConcept C79974875 @default.
- W3195366917 hasConceptScore W3195366917C111919701 @default.
- W3195366917 hasConceptScore W3195366917C112930515 @default.
- W3195366917 hasConceptScore W3195366917C115901376 @default.
- W3195366917 hasConceptScore W3195366917C124101348 @default.
- W3195366917 hasConceptScore W3195366917C127413603 @default.
- W3195366917 hasConceptScore W3195366917C142724271 @default.
- W3195366917 hasConceptScore W3195366917C144133560 @default.
- W3195366917 hasConceptScore W3195366917C204787440 @default.
- W3195366917 hasConceptScore W3195366917C2522767166 @default.
- W3195366917 hasConceptScore W3195366917C2779965156 @default.
- W3195366917 hasConceptScore W3195366917C38652104 @default.
- W3195366917 hasConceptScore W3195366917C41008148 @default.
- W3195366917 hasConceptScore W3195366917C71924100 @default.
- W3195366917 hasConceptScore W3195366917C75684735 @default.
- W3195366917 hasConceptScore W3195366917C78519656 @default.
- W3195366917 hasConceptScore W3195366917C79158427 @default.
- W3195366917 hasConceptScore W3195366917C79974875 @default.
- W3195366917 hasLocation W31953669171 @default.
- W3195366917 hasOpenAccess W3195366917 @default.
- W3195366917 hasPrimaryLocation W31953669171 @default.
- W3195366917 hasRelatedWork W2480180468 @default.
- W3195366917 hasRelatedWork W2495369952 @default.
- W3195366917 hasRelatedWork W2521181996 @default.
- W3195366917 hasRelatedWork W2523735716 @default.
- W3195366917 hasRelatedWork W2769401519 @default.
- W3195366917 hasRelatedWork W2800513237 @default.
- W3195366917 hasRelatedWork W2889318847 @default.
- W3195366917 hasRelatedWork W2899767978 @default.
- W3195366917 hasRelatedWork W2913207978 @default.
- W3195366917 hasRelatedWork W2913763310 @default.
- W3195366917 hasRelatedWork W2949624155 @default.
- W3195366917 hasRelatedWork W2950986170 @default.
- W3195366917 hasRelatedWork W2953320122 @default.
- W3195366917 hasRelatedWork W3007943882 @default.
- W3195366917 hasRelatedWork W3017469906 @default.
- W3195366917 hasRelatedWork W3018793999 @default.
- W3195366917 hasRelatedWork W3089768002 @default.
- W3195366917 hasRelatedWork W3108222129 @default.
- W3195366917 hasRelatedWork W3116117838 @default.
- W3195366917 hasRelatedWork W3134444317 @default.
- W3195366917 isParatext "false" @default.
- W3195366917 isRetracted "false" @default.
- W3195366917 magId "3195366917" @default.
- W3195366917 workType "article" @default.