Matches in SemOpenAlex for { <https://semopenalex.org/work/W3195392765> ?p ?o ?g. }
- W3195392765 endingPage "561" @default.
- W3195392765 startingPage "561" @default.
- W3195392765 abstract "Recent technological advancements in geomatics and mobile sensing have led to various urban big data, such as Tencent street view (TSV) photographs; yet, the urban objects in the big dataset have hitherto been inadequately exploited. This paper aims to propose a pedestrian analytics approach named vectors of uncountable and countable objects for clustering and analysis (VUCCA) for processing 530,000 TSV photographs of Hong Kong Island. First, VUCCA transductively adopts two pre-trained deep models to TSV photographs for extracting pedestrians and surrounding pixels into generalizable semantic vectors of features, including uncountable objects such as vegetation, sky, paved pedestrian path, and guardrail and countable objects such as cars, trucks, pedestrians, city animals, and traffic lights. Then, the extracted pedestrians are semantically clustered using the vectors, e.g., for understanding where they usually stand. Third, pedestrians are semantically indexed using relations and activities (e.g., walking behind a guardrail, road-crossing, carrying a backpack, or walking a pet) for queries of unstructured photographic instances or natural language clauses. The experiment results showed that the pedestrians detected in the TSV photographs were successfully clustered into meaningful groups and indexed by the semantic vectors. The presented VUCCA can enrich eye-level urban features into computational semantic vectors for pedestrians to enable smart city research in urban geography, urban planning, real estate, transportation, conservation, and other disciplines." @default.
- W3195392765 created "2021-08-30" @default.
- W3195392765 creator A5011421741 @default.
- W3195392765 creator A5018546059 @default.
- W3195392765 creator A5035339773 @default.
- W3195392765 creator A5062957234 @default.
- W3195392765 creator A5087524487 @default.
- W3195392765 creator A5087631945 @default.
- W3195392765 date "2021-08-18" @default.
- W3195392765 modified "2023-10-01" @default.
- W3195392765 title "Big Data-Driven Pedestrian Analytics: Unsupervised Clustering and Relational Query Based on Tencent Street View Photographs" @default.
- W3195392765 cites W1969085745 @default.
- W3195392765 cites W1977556410 @default.
- W3195392765 cites W2024414364 @default.
- W3195392765 cites W2053279442 @default.
- W3195392765 cites W2058401212 @default.
- W3195392765 cites W2089468765 @default.
- W3195392765 cites W2130975440 @default.
- W3195392765 cites W2132424367 @default.
- W3195392765 cites W2165698076 @default.
- W3195392765 cites W2340897893 @default.
- W3195392765 cites W2465856436 @default.
- W3195392765 cites W2478090196 @default.
- W3195392765 cites W2526375869 @default.
- W3195392765 cites W2576683119 @default.
- W3195392765 cites W2604463754 @default.
- W3195392765 cites W2619464418 @default.
- W3195392765 cites W2762186317 @default.
- W3195392765 cites W2767884480 @default.
- W3195392765 cites W2768483273 @default.
- W3195392765 cites W2770820547 @default.
- W3195392765 cites W2771056443 @default.
- W3195392765 cites W2772030296 @default.
- W3195392765 cites W2782078221 @default.
- W3195392765 cites W2794191739 @default.
- W3195392765 cites W2801797541 @default.
- W3195392765 cites W2806124225 @default.
- W3195392765 cites W2884748395 @default.
- W3195392765 cites W2890231632 @default.
- W3195392765 cites W2903963188 @default.
- W3195392765 cites W2904346290 @default.
- W3195392765 cites W2904789260 @default.
- W3195392765 cites W2915953456 @default.
- W3195392765 cites W2915971115 @default.
- W3195392765 cites W2919115771 @default.
- W3195392765 cites W2922919311 @default.
- W3195392765 cites W2926691444 @default.
- W3195392765 cites W2933718005 @default.
- W3195392765 cites W2938085152 @default.
- W3195392765 cites W2943102408 @default.
- W3195392765 cites W2943325261 @default.
- W3195392765 cites W2944019945 @default.
- W3195392765 cites W2948019632 @default.
- W3195392765 cites W2963120918 @default.
- W3195392765 cites W2963365374 @default.
- W3195392765 cites W2963449390 @default.
- W3195392765 cites W2963599420 @default.
- W3195392765 cites W2967496926 @default.
- W3195392765 cites W2997432680 @default.
- W3195392765 cites W3006084244 @default.
- W3195392765 cites W3007489912 @default.
- W3195392765 cites W3011312272 @default.
- W3195392765 cites W3016217604 @default.
- W3195392765 cites W3044936734 @default.
- W3195392765 cites W3047607466 @default.
- W3195392765 cites W3122678879 @default.
- W3195392765 cites W3124042826 @default.
- W3195392765 cites W3130862222 @default.
- W3195392765 cites W3134208490 @default.
- W3195392765 cites W3163880085 @default.
- W3195392765 cites W3166458872 @default.
- W3195392765 cites W3207980613 @default.
- W3195392765 doi "https://doi.org/10.3390/ijgi10080561" @default.
- W3195392765 hasPublicationYear "2021" @default.
- W3195392765 type Work @default.
- W3195392765 sameAs 3195392765 @default.
- W3195392765 citedByCount "10" @default.
- W3195392765 countsByYear W31953927652021 @default.
- W3195392765 countsByYear W31953927652022 @default.
- W3195392765 countsByYear W31953927652023 @default.
- W3195392765 crossrefType "journal-article" @default.
- W3195392765 hasAuthorship W3195392765A5011421741 @default.
- W3195392765 hasAuthorship W3195392765A5018546059 @default.
- W3195392765 hasAuthorship W3195392765A5035339773 @default.
- W3195392765 hasAuthorship W3195392765A5062957234 @default.
- W3195392765 hasAuthorship W3195392765A5087524487 @default.
- W3195392765 hasAuthorship W3195392765A5087631945 @default.
- W3195392765 hasBestOaLocation W31953927651 @default.
- W3195392765 hasConcept C124101348 @default.
- W3195392765 hasConcept C154945302 @default.
- W3195392765 hasConcept C166957645 @default.
- W3195392765 hasConcept C205649164 @default.
- W3195392765 hasConcept C2777113093 @default.
- W3195392765 hasConcept C2781238097 @default.
- W3195392765 hasConcept C41008148 @default.
- W3195392765 hasConcept C58640448 @default.
- W3195392765 hasConcept C73555534 @default.
- W3195392765 hasConcept C75684735 @default.