Matches in SemOpenAlex for { <https://semopenalex.org/work/W3195475321> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W3195475321 abstract "Spectroscopy, the study of interactions between radiation and matter, often becomes more complicated for intense radiation due to the cause of nonlinearity. At the molecular level, the nonlinear optical (NLO) properties can be described using higher-order polarizability tensors, such as the first and second hyperpolarizabilities. Providing an insight into these properties is essential for designing NLO devices, and thus theoretical tools that can accurately and efficiently model them are greatly needed. The sum-over-states model within a time-dependent density functional theory (TDDFT) framework is probably the most commonly used tool, and has shown success in calculating resonant NLO properties. However, this approach often assumes that a few states dominate the response, and consequently becomes less reliable when far from resonances or for systems that are characterized by a high density of states, such as metal clusters. To overcome this limitation, we have adopted response theory that takes all states into account by construction. With a phenomenological damping factor embedded into it, termed damped response theory, a balanced description of all off-, near-, and on-resonance optical properties can be enabled for both molecules and metal clusters. With the damped nonlinear response theory, we have performed simulations for the resonance hyper-Rayleigh scattering (HRayS) of both molecules and small Ag clusters, the frequency-scanned hyper-Raman scattering (HRS) of the octupolar molecule crystal violet (CV), and the two-photon absorption (TPA) of the thiolate-protected Au25 cluster. These achievements allow for evaluating two-photon resonance enhanced HRayS of Ag clusters, indicate the HRS of CV is dominated by the Franck-Condon effects at the lowest two excitation energies, and reveal the one- and two-photon double resonance effect is not the main cause of the huge TPA cross sections of Au25(SH)18− found experimentally. However, widespread of the NLO techniques is still impeded by their inherent low cross sections. One routine solution is to intensify the spectroscopic signals via chemical mechanism (CM), e.g., the molecular resonance effects; alternatively, electromagnetic mechanism (EMM) that arises from surface localized plasmons can also significantly enhance the signal intensities. For surface-enhanced Raman scattering (SERS), it has been found that the EMM plays a more important role in the signal enhancement as compared to the CM. To this end, we focus on the EMM and have developed two atomistic electrodynamics- quantum mechanical models to include the surface effects on HRS, termed surface-enhanced HRS (SEHRS). The first is the discrete interaction model/quantum mechanical model, which combines an atomistic electrodynamics model of the nanoparticle with a TDDFT description of the molecule. The second is a dressed-tensors method that accounts for the interactions between the molecule and the inhomogeneous local fields. With these methods, we have shown that the field gradient effects mainly determine the…" @default.
- W3195475321 created "2021-08-30" @default.
- W3195475321 creator A5046022996 @default.
- W3195475321 date "2017-01-01" @default.
- W3195475321 modified "2023-09-23" @default.
- W3195475321 title "ATOMISTIC ELECTRODYNAMICS-QUANTUM MECHANICAL METHODS TO MODEL SURFACE-ENHANCED NONLINEAR OPTICAL SPECTROSCOPIES" @default.
- W3195475321 hasPublicationYear "2017" @default.
- W3195475321 type Work @default.
- W3195475321 sameAs 3195475321 @default.
- W3195475321 citedByCount "0" @default.
- W3195475321 crossrefType "journal-article" @default.
- W3195475321 hasAuthorship W3195475321A5046022996 @default.
- W3195475321 hasConcept C121332964 @default.
- W3195475321 hasConcept C139210041 @default.
- W3195475321 hasConcept C139287275 @default.
- W3195475321 hasConcept C152365726 @default.
- W3195475321 hasConcept C158622935 @default.
- W3195475321 hasConcept C159317903 @default.
- W3195475321 hasConcept C164866538 @default.
- W3195475321 hasConcept C169573571 @default.
- W3195475321 hasConcept C191486275 @default.
- W3195475321 hasConcept C19637589 @default.
- W3195475321 hasConcept C199360897 @default.
- W3195475321 hasConcept C20853536 @default.
- W3195475321 hasConcept C30475298 @default.
- W3195475321 hasConcept C32891209 @default.
- W3195475321 hasConcept C32909587 @default.
- W3195475321 hasConcept C40003534 @default.
- W3195475321 hasConcept C41008148 @default.
- W3195475321 hasConcept C41999313 @default.
- W3195475321 hasConcept C46244369 @default.
- W3195475321 hasConcept C62520636 @default.
- W3195475321 hasConcept C78854221 @default.
- W3195475321 hasConcept C84114770 @default.
- W3195475321 hasConceptScore W3195475321C121332964 @default.
- W3195475321 hasConceptScore W3195475321C139210041 @default.
- W3195475321 hasConceptScore W3195475321C139287275 @default.
- W3195475321 hasConceptScore W3195475321C152365726 @default.
- W3195475321 hasConceptScore W3195475321C158622935 @default.
- W3195475321 hasConceptScore W3195475321C159317903 @default.
- W3195475321 hasConceptScore W3195475321C164866538 @default.
- W3195475321 hasConceptScore W3195475321C169573571 @default.
- W3195475321 hasConceptScore W3195475321C191486275 @default.
- W3195475321 hasConceptScore W3195475321C19637589 @default.
- W3195475321 hasConceptScore W3195475321C199360897 @default.
- W3195475321 hasConceptScore W3195475321C20853536 @default.
- W3195475321 hasConceptScore W3195475321C30475298 @default.
- W3195475321 hasConceptScore W3195475321C32891209 @default.
- W3195475321 hasConceptScore W3195475321C32909587 @default.
- W3195475321 hasConceptScore W3195475321C40003534 @default.
- W3195475321 hasConceptScore W3195475321C41008148 @default.
- W3195475321 hasConceptScore W3195475321C41999313 @default.
- W3195475321 hasConceptScore W3195475321C46244369 @default.
- W3195475321 hasConceptScore W3195475321C62520636 @default.
- W3195475321 hasConceptScore W3195475321C78854221 @default.
- W3195475321 hasConceptScore W3195475321C84114770 @default.
- W3195475321 hasLocation W31954753211 @default.
- W3195475321 hasOpenAccess W3195475321 @default.
- W3195475321 hasPrimaryLocation W31954753211 @default.
- W3195475321 hasRelatedWork W120574999 @default.
- W3195475321 hasRelatedWork W149750269 @default.
- W3195475321 hasRelatedWork W1780529302 @default.
- W3195475321 hasRelatedWork W1987932843 @default.
- W3195475321 hasRelatedWork W2040097884 @default.
- W3195475321 hasRelatedWork W2055114886 @default.
- W3195475321 hasRelatedWork W2088389538 @default.
- W3195475321 hasRelatedWork W2108564645 @default.
- W3195475321 hasRelatedWork W2133752507 @default.
- W3195475321 hasRelatedWork W2172311695 @default.
- W3195475321 hasRelatedWork W2251799313 @default.
- W3195475321 hasRelatedWork W2285779185 @default.
- W3195475321 hasRelatedWork W2483613784 @default.
- W3195475321 hasRelatedWork W2545566271 @default.
- W3195475321 hasRelatedWork W2894829562 @default.
- W3195475321 hasRelatedWork W2898893813 @default.
- W3195475321 hasRelatedWork W3008134424 @default.
- W3195475321 hasRelatedWork W3012113263 @default.
- W3195475321 hasRelatedWork W3124517264 @default.
- W3195475321 hasRelatedWork W3195490855 @default.
- W3195475321 isParatext "false" @default.
- W3195475321 isRetracted "false" @default.
- W3195475321 magId "3195475321" @default.
- W3195475321 workType "article" @default.