Matches in SemOpenAlex for { <https://semopenalex.org/work/W3195483905> ?p ?o ?g. }
- W3195483905 endingPage "114269" @default.
- W3195483905 startingPage "114269" @default.
- W3195483905 abstract "The main aim of the paper is to provide effective and accurate solutions for the calculation of the support region of the μ-law logarithmic companding quantizers. A new solution for the starting point of iterative methods will be proposed, that provides very accurate value of the support region (being the main parameter needed for the design of the quantizer) only after one iteration of the iterative method. Based on this new starting point, an accurate closed-form approximate expression for the calculation of the support region will be derived, as one of the main contributions of the paper. To significantly simplify implementation of the μ-law companding quantizer, piecewise linearization is performed. A new linearization method is presented, based on the optimization of the last segments. Derivation of an accurate closed-form formula for the support region of the linearized quantizer is done, as an important contribution. The obtained linearized μ-law companding quantizer is very simple to design (due to closed-form formulas) and to implement (due to linearization), providing at the same time very high performance (due to optimization of the last segments). Due to these and other advantages (robustness, adjustability to the statistical distribution of the input signal), the proposed quantizer can be used in many topical applications, such as in receivers of 5G wireless systems or in neural networks for quantization of weights and activations. The paper provides an application of the designed quantizers for quantization of weights of a neural network, showing significant decreasing of the bit-rate compared to the standard full-precision representation (from 32 bits to just 5 bits), with the same prediction accuracy of the network. • A very accurate closed-form expression for the support region of the µ-law logarithmic quantizer is provided. • Implementation complexity of the µ-law logarithmic quantizer is drastically reduced by optimized linearization. • Weights of neural networks can be drastically compressed if they are quantized with the proposed quantizer." @default.
- W3195483905 created "2021-08-30" @default.
- W3195483905 creator A5003447533 @default.
- W3195483905 creator A5021040932 @default.
- W3195483905 creator A5025739407 @default.
- W3195483905 creator A5048997533 @default.
- W3195483905 creator A5061944086 @default.
- W3195483905 creator A5074812063 @default.
- W3195483905 date "2021-09-01" @default.
- W3195483905 modified "2023-09-26" @default.
- W3195483905 title "Support region of μ-law logarithmic quantizers for Laplacian source applied in neural networks" @default.
- W3195483905 cites W2010225150 @default.
- W3195483905 cites W2020644915 @default.
- W3195483905 cites W2080614907 @default.
- W3195483905 cites W2112414578 @default.
- W3195483905 cites W2147673268 @default.
- W3195483905 cites W2166336814 @default.
- W3195483905 cites W2917008732 @default.
- W3195483905 cites W3007729836 @default.
- W3195483905 cites W3008684984 @default.
- W3195483905 cites W3085422561 @default.
- W3195483905 cites W3096849335 @default.
- W3195483905 doi "https://doi.org/10.1016/j.microrel.2021.114269" @default.
- W3195483905 hasPublicationYear "2021" @default.
- W3195483905 type Work @default.
- W3195483905 sameAs 3195483905 @default.
- W3195483905 citedByCount "1" @default.
- W3195483905 countsByYear W31954839052022 @default.
- W3195483905 crossrefType "journal-article" @default.
- W3195483905 hasAuthorship W3195483905A5003447533 @default.
- W3195483905 hasAuthorship W3195483905A5021040932 @default.
- W3195483905 hasAuthorship W3195483905A5025739407 @default.
- W3195483905 hasAuthorship W3195483905A5048997533 @default.
- W3195483905 hasAuthorship W3195483905A5061944086 @default.
- W3195483905 hasAuthorship W3195483905A5074812063 @default.
- W3195483905 hasConcept C104250799 @default.
- W3195483905 hasConcept C104317684 @default.
- W3195483905 hasConcept C11210021 @default.
- W3195483905 hasConcept C11413529 @default.
- W3195483905 hasConcept C121332964 @default.
- W3195483905 hasConcept C126255220 @default.
- W3195483905 hasConcept C127162648 @default.
- W3195483905 hasConcept C134306372 @default.
- W3195483905 hasConcept C154945302 @default.
- W3195483905 hasConcept C158622935 @default.
- W3195483905 hasConcept C164660894 @default.
- W3195483905 hasConcept C165700671 @default.
- W3195483905 hasConcept C185592680 @default.
- W3195483905 hasConcept C2775924081 @default.
- W3195483905 hasConcept C28855332 @default.
- W3195483905 hasConcept C33923547 @default.
- W3195483905 hasConcept C39927690 @default.
- W3195483905 hasConcept C40409654 @default.
- W3195483905 hasConcept C41008148 @default.
- W3195483905 hasConcept C47446073 @default.
- W3195483905 hasConcept C50644808 @default.
- W3195483905 hasConcept C55493867 @default.
- W3195483905 hasConcept C62520636 @default.
- W3195483905 hasConcept C63479239 @default.
- W3195483905 hasConcept C76155785 @default.
- W3195483905 hasConceptScore W3195483905C104250799 @default.
- W3195483905 hasConceptScore W3195483905C104317684 @default.
- W3195483905 hasConceptScore W3195483905C11210021 @default.
- W3195483905 hasConceptScore W3195483905C11413529 @default.
- W3195483905 hasConceptScore W3195483905C121332964 @default.
- W3195483905 hasConceptScore W3195483905C126255220 @default.
- W3195483905 hasConceptScore W3195483905C127162648 @default.
- W3195483905 hasConceptScore W3195483905C134306372 @default.
- W3195483905 hasConceptScore W3195483905C154945302 @default.
- W3195483905 hasConceptScore W3195483905C158622935 @default.
- W3195483905 hasConceptScore W3195483905C164660894 @default.
- W3195483905 hasConceptScore W3195483905C165700671 @default.
- W3195483905 hasConceptScore W3195483905C185592680 @default.
- W3195483905 hasConceptScore W3195483905C2775924081 @default.
- W3195483905 hasConceptScore W3195483905C28855332 @default.
- W3195483905 hasConceptScore W3195483905C33923547 @default.
- W3195483905 hasConceptScore W3195483905C39927690 @default.
- W3195483905 hasConceptScore W3195483905C40409654 @default.
- W3195483905 hasConceptScore W3195483905C41008148 @default.
- W3195483905 hasConceptScore W3195483905C47446073 @default.
- W3195483905 hasConceptScore W3195483905C50644808 @default.
- W3195483905 hasConceptScore W3195483905C55493867 @default.
- W3195483905 hasConceptScore W3195483905C62520636 @default.
- W3195483905 hasConceptScore W3195483905C63479239 @default.
- W3195483905 hasConceptScore W3195483905C76155785 @default.
- W3195483905 hasFunder F4320322729 @default.
- W3195483905 hasFunder F4320329307 @default.
- W3195483905 hasLocation W31954839051 @default.
- W3195483905 hasOpenAccess W3195483905 @default.
- W3195483905 hasPrimaryLocation W31954839051 @default.
- W3195483905 hasRelatedWork W1659174010 @default.
- W3195483905 hasRelatedWork W1972600340 @default.
- W3195483905 hasRelatedWork W2009159310 @default.
- W3195483905 hasRelatedWork W2103062170 @default.
- W3195483905 hasRelatedWork W2129881561 @default.
- W3195483905 hasRelatedWork W2131900419 @default.
- W3195483905 hasRelatedWork W2295721993 @default.
- W3195483905 hasRelatedWork W3026371449 @default.