Matches in SemOpenAlex for { <https://semopenalex.org/work/W3195772711> ?p ?o ?g. }
- W3195772711 endingPage "211" @default.
- W3195772711 startingPage "209" @default.
- W3195772711 abstract "Machine learning (ML) has become a commodity in our every-day lives. We routinely ask ML empowered smartphones to suggest lovely food places or to guide us through a strange place. ML methods have also become standard tools in many fields of science and engineering. A plethora of ML applications transform human lives at unprecedented pace and scale. This book portrays ML as the combination of three basic components: data, model and loss. ML methods combine these three components within computationally efficient implementations of the basic scientific principle trial and error. This principle consists of the continuous adaptation of a hypothesis about a phenomenon that generates data. ML methods use a hypothesis to compute predictions for future events. We believe that thinking about ML as combinations of three components given by data, model, and loss helps to navigate the steadily growing offer for ready-to-use ML methods. Our three-component picture of ML allows a unified treatment of a wide range of concepts and techniques which seem quite unrelated at first sight. The regularization effect of early stopping in iterative methods is due to the shrinking of the effective hypothesis space. Privacy-preserving ML is obtained by particular choices for the features of data points. Explainable ML methods are characterized by particular choices for the hypothesis space. To make good use of ML tools it is instrumental to understand its underlying principles at different levels of detail. On a lower level, this tutorial helps ML engineers to choose suitable methods for the application at hand. The book also offers a higher-level view on the implementation of ML methods which is typically required to manage a team of ML engineers and data scientists." @default.
- W3195772711 created "2021-08-30" @default.
- W3195772711 creator A5006624933 @default.
- W3195772711 date "2021-01-01" @default.
- W3195772711 modified "2023-09-26" @default.
- W3195772711 title "Machine learning basics" @default.
- W3195772711 cites W142858861 @default.
- W3195772711 cites W143004564 @default.
- W3195772711 cites W1479807131 @default.
- W3195772711 cites W1480376833 @default.
- W3195772711 cites W1492815834 @default.
- W3195772711 cites W1494099594 @default.
- W3195772711 cites W1511986666 @default.
- W3195772711 cites W1560724230 @default.
- W3195772711 cites W1569098853 @default.
- W3195772711 cites W1570963478 @default.
- W3195772711 cites W1594563152 @default.
- W3195772711 cites W1630816465 @default.
- W3195772711 cites W1660390307 @default.
- W3195772711 cites W1663973292 @default.
- W3195772711 cites W1861537833 @default.
- W3195772711 cites W186513846 @default.
- W3195772711 cites W1875112053 @default.
- W3195772711 cites W1965392255 @default.
- W3195772711 cites W1968018625 @default.
- W3195772711 cites W1970074386 @default.
- W3195772711 cites W1984034733 @default.
- W3195772711 cites W1984073246 @default.
- W3195772711 cites W1997155281 @default.
- W3195772711 cites W2008229822 @default.
- W3195772711 cites W2019363670 @default.
- W3195772711 cites W2021311647 @default.
- W3195772711 cites W2039426294 @default.
- W3195772711 cites W2056099894 @default.
- W3195772711 cites W2056145119 @default.
- W3195772711 cites W2073459066 @default.
- W3195772711 cites W2085944979 @default.
- W3195772711 cites W2096698247 @default.
- W3195772711 cites W2097415784 @default.
- W3195772711 cites W2099111195 @default.
- W3195772711 cites W2099471712 @default.
- W3195772711 cites W2100303383 @default.
- W3195772711 cites W2101234009 @default.
- W3195772711 cites W2103018059 @default.
- W3195772711 cites W2103496339 @default.
- W3195772711 cites W2103633133 @default.
- W3195772711 cites W2103869680 @default.
- W3195772711 cites W2108829665 @default.
- W3195772711 cites W2112420033 @default.
- W3195772711 cites W2116361269 @default.
- W3195772711 cites W2117049614 @default.
- W3195772711 cites W2120350343 @default.
- W3195772711 cites W2121863487 @default.
- W3195772711 cites W2122410182 @default.
- W3195772711 cites W2122759946 @default.
- W3195772711 cites W2125027820 @default.
- W3195772711 cites W2127314075 @default.
- W3195772711 cites W2131628350 @default.
- W3195772711 cites W2132914434 @default.
- W3195772711 cites W2134199473 @default.
- W3195772711 cites W2135194391 @default.
- W3195772711 cites W2135479785 @default.
- W3195772711 cites W2135780853 @default.
- W3195772711 cites W2140971281 @default.
- W3195772711 cites W2141556672 @default.
- W3195772711 cites W2143776582 @default.
- W3195772711 cites W2148355461 @default.
- W3195772711 cites W2149489787 @default.
- W3195772711 cites W2149829075 @default.
- W3195772711 cites W2156909104 @default.
- W3195772711 cites W2163599171 @default.
- W3195772711 cites W2163605009 @default.
- W3195772711 cites W2165698076 @default.
- W3195772711 cites W2165874743 @default.
- W3195772711 cites W2169147844 @default.
- W3195772711 cites W2210543184 @default.
- W3195772711 cites W22168010 @default.
- W3195772711 cites W2282821441 @default.
- W3195772711 cites W228380312 @default.
- W3195772711 cites W2294644361 @default.
- W3195772711 cites W2295536846 @default.
- W3195772711 cites W2296319761 @default.
- W3195772711 cites W2513180554 @default.
- W3195772711 cites W2519505014 @default.
- W3195772711 cites W2550848904 @default.
- W3195772711 cites W2557283755 @default.
- W3195772711 cites W2562836854 @default.
- W3195772711 cites W2570764145 @default.
- W3195772711 cites W2580657852 @default.
- W3195772711 cites W2581082771 @default.
- W3195772711 cites W2657631929 @default.
- W3195772711 cites W2772117312 @default.
- W3195772711 cites W2776559270 @default.
- W3195772711 cites W2782369434 @default.
- W3195772711 cites W2788403449 @default.
- W3195772711 cites W2798766386 @default.
- W3195772711 cites W2798909945 @default.
- W3195772711 cites W2893370267 @default.