Matches in SemOpenAlex for { <https://semopenalex.org/work/W3195879306> ?p ?o ?g. }
- W3195879306 endingPage "1918" @default.
- W3195879306 startingPage "1918" @default.
- W3195879306 abstract "With the recent development of various MRI-conditional cardiac implantable electronic devices (CIEDs), the accurate identification and characterization of CIEDs have become critical when performing MRI in patients with CIEDs. We aimed to develop and evaluate a deep learning-based algorithm (DLA) that performs the detection and characterization of parameters, including MRI safety, of CIEDs on chest radiograph (CR) in a single step and compare its performance with other related algorithms that were recently developed.We developed a DLA (X-ray CIED identification [XCID]) using 9912 CRs of 958 patients with 968 CIEDs comprising 26 model groups from 4 manufacturers obtained between 2014 and 2019 from one hospital. The performance of XCID was tested with an external dataset consisting of 2122 CRs obtained from a different hospital and compared with the performance of two other related algorithms recently reported, including PacemakerID (PID) and Pacemaker identification with neural networks (PPMnn).The overall accuracies of XCID for the manufacturer classification, model group identification, and MRI safety characterization using the internal test dataset were 99.7% (992/995), 97.2% (967/995), and 98.9% (984/995), respectively. These were 95.8% (2033/2122), 85.4% (1813/2122), and 92.2% (1956/2122), respectively, with the external test dataset. In the comparative study, the accuracy for the manufacturer classification was 95.0% (152/160) for XCID and 91.3% for PPMnn (146/160), which was significantly higher than that for PID (80.0%,128/160; p < 0.001 for both). XCID demonstrated a higher accuracy (88.1%; 141/160) than PPMnn (80.0%; 128/160) in identifying model groups (p < 0.001).The remarkable and consistent performance of XCID suggests its applicability for detection, manufacturer and model identification, as well as MRI safety characterization of CIED on CRs. Further studies are warranted to guarantee the safe use of XCID in clinical practice." @default.
- W3195879306 created "2021-08-30" @default.
- W3195879306 creator A5004404584 @default.
- W3195879306 creator A5008342786 @default.
- W3195879306 creator A5030762203 @default.
- W3195879306 creator A5031220093 @default.
- W3195879306 creator A5042149642 @default.
- W3195879306 creator A5055410655 @default.
- W3195879306 creator A5056992931 @default.
- W3195879306 creator A5084536077 @default.
- W3195879306 date "2021-01-01" @default.
- W3195879306 modified "2023-10-02" @default.
- W3195879306 title "Deep Learning-Based Algorithm for the Detection and Characterization of MRI Safety of Cardiac Implantable Electronic Devices on Chest Radiographs" @default.
- W3195879306 cites W1508695273 @default.
- W3195879306 cites W1964835280 @default.
- W3195879306 cites W1982690035 @default.
- W3195879306 cites W1997972509 @default.
- W3195879306 cites W2031489346 @default.
- W3195879306 cites W2041592631 @default.
- W3195879306 cites W2056840219 @default.
- W3195879306 cites W2062398305 @default.
- W3195879306 cites W2072925058 @default.
- W3195879306 cites W2084632342 @default.
- W3195879306 cites W2088449393 @default.
- W3195879306 cites W2090439298 @default.
- W3195879306 cites W2100086111 @default.
- W3195879306 cites W2102719631 @default.
- W3195879306 cites W2106479238 @default.
- W3195879306 cites W2106920852 @default.
- W3195879306 cites W2124610201 @default.
- W3195879306 cites W2131982204 @default.
- W3195879306 cites W2152799761 @default.
- W3195879306 cites W2164605113 @default.
- W3195879306 cites W2165063935 @default.
- W3195879306 cites W2547193776 @default.
- W3195879306 cites W2599761051 @default.
- W3195879306 cites W2613688510 @default.
- W3195879306 cites W2614153041 @default.
- W3195879306 cites W2783687327 @default.
- W3195879306 cites W2893571569 @default.
- W3195879306 cites W2923923482 @default.
- W3195879306 cites W2937149588 @default.
- W3195879306 cites W2974801405 @default.
- W3195879306 cites W2982071196 @default.
- W3195879306 cites W3009372249 @default.
- W3195879306 cites W3015458354 @default.
- W3195879306 cites W3025817202 @default.
- W3195879306 cites W3025870037 @default.
- W3195879306 cites W3113178943 @default.
- W3195879306 cites W3114372483 @default.
- W3195879306 cites W4288083516 @default.
- W3195879306 doi "https://doi.org/10.3348/kjr.2021.0201" @default.
- W3195879306 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8546129" @default.
- W3195879306 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34431249" @default.
- W3195879306 hasPublicationYear "2021" @default.
- W3195879306 type Work @default.
- W3195879306 sameAs 3195879306 @default.
- W3195879306 citedByCount "6" @default.
- W3195879306 countsByYear W31958793062022 @default.
- W3195879306 countsByYear W31958793062023 @default.
- W3195879306 crossrefType "journal-article" @default.
- W3195879306 hasAuthorship W3195879306A5004404584 @default.
- W3195879306 hasAuthorship W3195879306A5008342786 @default.
- W3195879306 hasAuthorship W3195879306A5030762203 @default.
- W3195879306 hasAuthorship W3195879306A5031220093 @default.
- W3195879306 hasAuthorship W3195879306A5042149642 @default.
- W3195879306 hasAuthorship W3195879306A5055410655 @default.
- W3195879306 hasAuthorship W3195879306A5056992931 @default.
- W3195879306 hasAuthorship W3195879306A5084536077 @default.
- W3195879306 hasBestOaLocation W31958793062 @default.
- W3195879306 hasConcept C11413529 @default.
- W3195879306 hasConcept C116834253 @default.
- W3195879306 hasConcept C119857082 @default.
- W3195879306 hasConcept C126838900 @default.
- W3195879306 hasConcept C154945302 @default.
- W3195879306 hasConcept C2781137159 @default.
- W3195879306 hasConcept C36454342 @default.
- W3195879306 hasConcept C41008148 @default.
- W3195879306 hasConcept C59822182 @default.
- W3195879306 hasConcept C71924100 @default.
- W3195879306 hasConcept C86803240 @default.
- W3195879306 hasConceptScore W3195879306C11413529 @default.
- W3195879306 hasConceptScore W3195879306C116834253 @default.
- W3195879306 hasConceptScore W3195879306C119857082 @default.
- W3195879306 hasConceptScore W3195879306C126838900 @default.
- W3195879306 hasConceptScore W3195879306C154945302 @default.
- W3195879306 hasConceptScore W3195879306C2781137159 @default.
- W3195879306 hasConceptScore W3195879306C36454342 @default.
- W3195879306 hasConceptScore W3195879306C41008148 @default.
- W3195879306 hasConceptScore W3195879306C59822182 @default.
- W3195879306 hasConceptScore W3195879306C71924100 @default.
- W3195879306 hasConceptScore W3195879306C86803240 @default.
- W3195879306 hasFunder F4320328824 @default.
- W3195879306 hasIssue "11" @default.
- W3195879306 hasLocation W31958793061 @default.
- W3195879306 hasLocation W31958793062 @default.
- W3195879306 hasLocation W31958793063 @default.
- W3195879306 hasLocation W31958793064 @default.