Matches in SemOpenAlex for { <https://semopenalex.org/work/W3195996253> ?p ?o ?g. }
- W3195996253 endingPage "108312" @default.
- W3195996253 startingPage "108312" @default.
- W3195996253 abstract "During the tunnel excavation, accurate cutterhead torque prediction is helpful to adjust shield machine operation parameters for avoiding cutterhead jamming, which greatly improves the safety and efficiency and reduces the cost. However, due to complex and changeable geological environments, it is improper to directly apply the trained model into other domains under changeable geological conditions. To solve the cross-domains issues, this paper presents a novel Adaptive Residual Long Short-Term Memory Network (ARLSTM) to predict cutterhead torque across domains. To begin with, residual blocks are applied into extracting beneficial features from the tunneling parameters automatically. And then, these extracted features are fed into feature regression predictor for obtaining final prediction results. Furthermore, the introduction of domain classifier is used for reducing probability distribution discrepancy from different domains via adversarial procedure. Finally, we used the actual dataset collected from Singapore Metro T225 project for evaluating ARLSTM. The experimental results present that ARLSTM improves the prediction performance by reducing 0.0571 MSE on average, 0.0695 MAE on average and 5.20% MAPE on average using the knowledge of source domain dataset. Meanwhile, compared with other data-driven methods, the comparison results present that the proposed network structure achieved better prediction performance. Consequently, ARLSTM has potential as a promising precise tool for cutterhead torque prediction used in the tunneling process." @default.
- W3195996253 created "2021-08-30" @default.
- W3195996253 creator A5021632916 @default.
- W3195996253 creator A5021977927 @default.
- W3195996253 creator A5062253666 @default.
- W3195996253 creator A5068216488 @default.
- W3195996253 date "2022-02-01" @default.
- W3195996253 modified "2023-10-15" @default.
- W3195996253 title "An accurate and adaptative cutterhead torque prediction method for shield tunneling machines via adaptative residual long-short term memory network" @default.
- W3195996253 cites W1901616594 @default.
- W3195996253 cites W1978380814 @default.
- W3195996253 cites W1982696459 @default.
- W3195996253 cites W2029926752 @default.
- W3195996253 cites W2101926813 @default.
- W3195996253 cites W2112796928 @default.
- W3195996253 cites W2269209149 @default.
- W3195996253 cites W2270470712 @default.
- W3195996253 cites W2373911460 @default.
- W3195996253 cites W2618530766 @default.
- W3195996253 cites W2794556472 @default.
- W3195996253 cites W2801451447 @default.
- W3195996253 cites W2902508499 @default.
- W3195996253 cites W2907541186 @default.
- W3195996253 cites W2909455890 @default.
- W3195996253 cites W2942549247 @default.
- W3195996253 cites W2946742630 @default.
- W3195996253 cites W2963516151 @default.
- W3195996253 cites W2966208199 @default.
- W3195996253 cites W2967982296 @default.
- W3195996253 cites W2975761873 @default.
- W3195996253 cites W2976749348 @default.
- W3195996253 cites W2983965271 @default.
- W3195996253 cites W2997578981 @default.
- W3195996253 cites W2999252446 @default.
- W3195996253 cites W3004822113 @default.
- W3195996253 cites W3025146590 @default.
- W3195996253 cites W3035588524 @default.
- W3195996253 cites W3040441211 @default.
- W3195996253 cites W3048009183 @default.
- W3195996253 cites W3090982778 @default.
- W3195996253 cites W3097245253 @default.
- W3195996253 cites W3101546351 @default.
- W3195996253 cites W3116862438 @default.
- W3195996253 cites W3130851741 @default.
- W3195996253 cites W3132755470 @default.
- W3195996253 cites W3160056486 @default.
- W3195996253 cites W3162426603 @default.
- W3195996253 cites W3174121031 @default.
- W3195996253 cites W3174871970 @default.
- W3195996253 doi "https://doi.org/10.1016/j.ymssp.2021.108312" @default.
- W3195996253 hasPublicationYear "2022" @default.
- W3195996253 type Work @default.
- W3195996253 sameAs 3195996253 @default.
- W3195996253 citedByCount "36" @default.
- W3195996253 countsByYear W31959962532021 @default.
- W3195996253 countsByYear W31959962532022 @default.
- W3195996253 countsByYear W31959962532023 @default.
- W3195996253 crossrefType "journal-article" @default.
- W3195996253 hasAuthorship W3195996253A5021632916 @default.
- W3195996253 hasAuthorship W3195996253A5021977927 @default.
- W3195996253 hasAuthorship W3195996253A5062253666 @default.
- W3195996253 hasAuthorship W3195996253A5068216488 @default.
- W3195996253 hasConcept C11413529 @default.
- W3195996253 hasConcept C121332964 @default.
- W3195996253 hasConcept C124101348 @default.
- W3195996253 hasConcept C127313418 @default.
- W3195996253 hasConcept C138081364 @default.
- W3195996253 hasConcept C144171764 @default.
- W3195996253 hasConcept C154945302 @default.
- W3195996253 hasConcept C155512373 @default.
- W3195996253 hasConcept C41008148 @default.
- W3195996253 hasConcept C5900021 @default.
- W3195996253 hasConcept C97355855 @default.
- W3195996253 hasConceptScore W3195996253C11413529 @default.
- W3195996253 hasConceptScore W3195996253C121332964 @default.
- W3195996253 hasConceptScore W3195996253C124101348 @default.
- W3195996253 hasConceptScore W3195996253C127313418 @default.
- W3195996253 hasConceptScore W3195996253C138081364 @default.
- W3195996253 hasConceptScore W3195996253C144171764 @default.
- W3195996253 hasConceptScore W3195996253C154945302 @default.
- W3195996253 hasConceptScore W3195996253C155512373 @default.
- W3195996253 hasConceptScore W3195996253C41008148 @default.
- W3195996253 hasConceptScore W3195996253C5900021 @default.
- W3195996253 hasConceptScore W3195996253C97355855 @default.
- W3195996253 hasFunder F4320321885 @default.
- W3195996253 hasFunder F4320327024 @default.
- W3195996253 hasFunder F4320335777 @default.
- W3195996253 hasFunder F4320336026 @default.
- W3195996253 hasLocation W31959962531 @default.
- W3195996253 hasOpenAccess W3195996253 @default.
- W3195996253 hasPrimaryLocation W31959962531 @default.
- W3195996253 hasRelatedWork W1975104796 @default.
- W3195996253 hasRelatedWork W2348439544 @default.
- W3195996253 hasRelatedWork W2360236568 @default.
- W3195996253 hasRelatedWork W2361433703 @default.
- W3195996253 hasRelatedWork W2363948817 @default.
- W3195996253 hasRelatedWork W2382544275 @default.
- W3195996253 hasRelatedWork W2430546716 @default.