Matches in SemOpenAlex for { <https://semopenalex.org/work/W3196105426> ?p ?o ?g. }
- W3196105426 endingPage "118514" @default.
- W3196105426 startingPage "118514" @default.
- W3196105426 abstract "Measures of change in hippocampal volume derived from longitudinal MRI are a well-studied biomarker of disease progression in Alzheimer's disease (AD) and are used in clinical trials to track therapeutic efficacy of disease-modifying treatments. However, longitudinal MRI change measures based on deformable registration can be confounded by MRI artifacts, resulting in over-estimation or underestimation of hippocampal atrophy. For example, the deformation-based-morphometry method ALOHA (Das et al., 2012) finds an increase in hippocampal volume in a substantial proportion of longitudinal scan pairs from the Alzheimer's Disease Neuroimaging Initiative (ADNI) study, unexpected, given that the hippocampal gray matter is lost with age and disease progression. We propose an alternative approach to quantify disease progression in the hippocampal region: to train a deep learning network (called DeepAtrophy) to infer temporal information from longitudinal scan pairs. The underlying assumption is that by learning to derive time-related information from scan pairs, the network implicitly learns to detect progressive changes that are related to aging and disease progression. Our network is trained using two categorical loss functions: one that measures the network's ability to correctly order two scans from the same subject, input in arbitrary order; and another that measures the ability to correctly infer the ratio of inter-scan intervals between two pairs of same-subject input scans. When applied to longitudinal MRI scan pairs from subjects unseen during training, DeepAtrophy achieves greater accuracy in scan temporal ordering and interscan interval inference tasks than ALOHA (88.5% vs. 75.5% and 81.1% vs. 75.0%, respectively). A scalar measure of time-related change in a subject level derived from DeepAtrophy is then examined as a biomarker of disease progression in the context of AD clinical trials. We find that this measure performs on par with ALOHA in discriminating groups of individuals at different stages of the AD continuum. Overall, our results suggest that using deep learning to infer temporal information from longitudinal MRI of the hippocampal region has good potential as a biomarker of disease progression, and hints that combining this approach with conventional deformation-based morphometry algorithms may lead to improved biomarkers in the future." @default.
- W3196105426 created "2021-08-30" @default.
- W3196105426 creator A5011438418 @default.
- W3196105426 creator A5037959448 @default.
- W3196105426 creator A5041387594 @default.
- W3196105426 creator A5046306832 @default.
- W3196105426 creator A5047157013 @default.
- W3196105426 creator A5057342287 @default.
- W3196105426 creator A5059550368 @default.
- W3196105426 creator A5091216037 @default.
- W3196105426 date "2021-11-01" @default.
- W3196105426 modified "2023-10-12" @default.
- W3196105426 title "DeepAtrophy: Teaching a neural network to detect progressive changes in longitudinal MRI of the hippocampal region in Alzheimer's disease" @default.
- W3196105426 cites W1561315863 @default.
- W3196105426 cites W1592395874 @default.
- W3196105426 cites W1787224781 @default.
- W3196105426 cites W1797408175 @default.
- W3196105426 cites W1929729372 @default.
- W3196105426 cites W1973637437 @default.
- W3196105426 cites W1974790621 @default.
- W3196105426 cites W1977832043 @default.
- W3196105426 cites W1988404208 @default.
- W3196105426 cites W1992252533 @default.
- W3196105426 cites W1995386242 @default.
- W3196105426 cites W2006617902 @default.
- W3196105426 cites W2008675071 @default.
- W3196105426 cites W2008826521 @default.
- W3196105426 cites W2017429172 @default.
- W3196105426 cites W2034406508 @default.
- W3196105426 cites W2040016992 @default.
- W3196105426 cites W2046933782 @default.
- W3196105426 cites W2051737015 @default.
- W3196105426 cites W2056898461 @default.
- W3196105426 cites W2077008573 @default.
- W3196105426 cites W2078524519 @default.
- W3196105426 cites W2087159877 @default.
- W3196105426 cites W2092496538 @default.
- W3196105426 cites W2103481737 @default.
- W3196105426 cites W2112579276 @default.
- W3196105426 cites W2117897510 @default.
- W3196105426 cites W2127117802 @default.
- W3196105426 cites W2129448596 @default.
- W3196105426 cites W2129497119 @default.
- W3196105426 cites W2133665775 @default.
- W3196105426 cites W2139886607 @default.
- W3196105426 cites W2148098215 @default.
- W3196105426 cites W2165840723 @default.
- W3196105426 cites W2169212716 @default.
- W3196105426 cites W2170646872 @default.
- W3196105426 cites W2171051269 @default.
- W3196105426 cites W2194775991 @default.
- W3196105426 cites W2470394683 @default.
- W3196105426 cites W2526035417 @default.
- W3196105426 cites W2577478840 @default.
- W3196105426 cites W2604920239 @default.
- W3196105426 cites W2686115594 @default.
- W3196105426 cites W2739137023 @default.
- W3196105426 cites W2751337337 @default.
- W3196105426 cites W2765751078 @default.
- W3196105426 cites W2766141193 @default.
- W3196105426 cites W2789728745 @default.
- W3196105426 cites W2806489700 @default.
- W3196105426 cites W2886266252 @default.
- W3196105426 cites W2887940751 @default.
- W3196105426 cites W2909627766 @default.
- W3196105426 cites W2914209001 @default.
- W3196105426 cites W2942818360 @default.
- W3196105426 cites W2951431383 @default.
- W3196105426 cites W2951445562 @default.
- W3196105426 cites W2956993163 @default.
- W3196105426 cites W2959949899 @default.
- W3196105426 cites W2962858109 @default.
- W3196105426 cites W2964078365 @default.
- W3196105426 cites W2979455765 @default.
- W3196105426 cites W2979840928 @default.
- W3196105426 cites W2980033661 @default.
- W3196105426 cites W3035160371 @default.
- W3196105426 cites W3047286661 @default.
- W3196105426 cites W3048839700 @default.
- W3196105426 cites W3080256062 @default.
- W3196105426 cites W3098269293 @default.
- W3196105426 cites W3102476541 @default.
- W3196105426 cites W330410308 @default.
- W3196105426 doi "https://doi.org/10.1016/j.neuroimage.2021.118514" @default.
- W3196105426 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8604562" @default.
- W3196105426 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34450261" @default.
- W3196105426 hasPublicationYear "2021" @default.
- W3196105426 type Work @default.
- W3196105426 sameAs 3196105426 @default.
- W3196105426 citedByCount "6" @default.
- W3196105426 countsByYear W31961054262022 @default.
- W3196105426 countsByYear W31961054262023 @default.
- W3196105426 crossrefType "journal-article" @default.
- W3196105426 hasAuthorship W3196105426A5011438418 @default.
- W3196105426 hasAuthorship W3196105426A5037959448 @default.
- W3196105426 hasAuthorship W3196105426A5041387594 @default.
- W3196105426 hasAuthorship W3196105426A5046306832 @default.
- W3196105426 hasAuthorship W3196105426A5047157013 @default.