Matches in SemOpenAlex for { <https://semopenalex.org/work/W3196133739> ?p ?o ?g. }
- W3196133739 endingPage "107" @default.
- W3196133739 startingPage "107" @default.
- W3196133739 abstract "In the age of digital information, where the internet and social networks, as well as personalised systems, have become an integral part of everyone’s life, it is often challenging to be aware of the amount of data produced daily and, unfortunately, of the potential risks caused by the indiscriminate sharing of personal data. Recently, attention to privacy has grown thanks to the introduction of specific regulations such as the European GDPR. In some fields, including recommender systems, this has inevitably led to a decrease in the amount of usable data, and, occasionally, to significant degradation in performance mainly due to information no longer being attributable to specific individuals. In this article, we present a dynamic privacy-preserving approach for recommendations in an academic context. We aim to implement a personalised system capable of protecting personal data while at the same time allowing sensible and meaningful use of the available data. The proposed approach introduces several pseudonymisation procedures based on the design goals described by the European Union Agency for Cybersecurity in their guidelines, in order to dynamically transform entities (e.g., persons) and attributes (e.g., authored papers and research interests) in such a way that any user processing the data are not able to identify individuals. We present a case study using data from researchers of the Georg Eckert Institute for International Textbook Research (Brunswick, Germany). Building a knowledge graph and exploiting a Neo4j database for data management, we first generate several pseudoN-graphs, being graphs with different rates of pseudonymised persons. Then, we evaluate our approach by leveraging the graph embedding algorithm node2vec to produce recommendations through node relatedness. The recommendations provided by the graphs in different privacy-preserving scenarios are compared with those provided by the fully non-pseudonymised graph, considered as the baseline of our evaluation. The experimental results show that, despite the structural modifications to the knowledge graph structure due to the de-identification processes, applying the approach proposed in this article allows for preserving significant performance values in terms of precision." @default.
- W3196133739 created "2021-08-30" @default.
- W3196133739 creator A5021949040 @default.
- W3196133739 creator A5035879496 @default.
- W3196133739 creator A5048751530 @default.
- W3196133739 date "2021-08-25" @default.
- W3196133739 modified "2023-10-18" @default.
- W3196133739 title "Dynamic Privacy-Preserving Recommendations on Academic Graph Data" @default.
- W3196133739 cites W1967603002 @default.
- W3196133739 cites W2020915469 @default.
- W3196133739 cites W2081580037 @default.
- W3196133739 cites W2109208918 @default.
- W3196133739 cites W2527113903 @default.
- W3196133739 cites W2554236311 @default.
- W3196133739 cites W2772486182 @default.
- W3196133739 cites W2790002550 @default.
- W3196133739 cites W2792322951 @default.
- W3196133739 cites W2811423811 @default.
- W3196133739 cites W2892241613 @default.
- W3196133739 cites W2907230994 @default.
- W3196133739 cites W2944884171 @default.
- W3196133739 cites W2962756421 @default.
- W3196133739 cites W2963120176 @default.
- W3196133739 cites W3048692512 @default.
- W3196133739 doi "https://doi.org/10.3390/computers10090107" @default.
- W3196133739 hasPublicationYear "2021" @default.
- W3196133739 type Work @default.
- W3196133739 sameAs 3196133739 @default.
- W3196133739 citedByCount "4" @default.
- W3196133739 countsByYear W31961337392022 @default.
- W3196133739 countsByYear W31961337392023 @default.
- W3196133739 crossrefType "journal-article" @default.
- W3196133739 hasAuthorship W3196133739A5021949040 @default.
- W3196133739 hasAuthorship W3196133739A5035879496 @default.
- W3196133739 hasAuthorship W3196133739A5048751530 @default.
- W3196133739 hasBestOaLocation W31961337391 @default.
- W3196133739 hasConcept C105639569 @default.
- W3196133739 hasConcept C108170787 @default.
- W3196133739 hasConcept C108827166 @default.
- W3196133739 hasConcept C111472728 @default.
- W3196133739 hasConcept C123201435 @default.
- W3196133739 hasConcept C132525143 @default.
- W3196133739 hasConcept C136764020 @default.
- W3196133739 hasConcept C138885662 @default.
- W3196133739 hasConcept C142724271 @default.
- W3196133739 hasConcept C144133560 @default.
- W3196133739 hasConcept C151730666 @default.
- W3196133739 hasConcept C169093310 @default.
- W3196133739 hasConcept C204787440 @default.
- W3196133739 hasConcept C2522767166 @default.
- W3196133739 hasConcept C2779343474 @default.
- W3196133739 hasConcept C2779965156 @default.
- W3196133739 hasConcept C2780615836 @default.
- W3196133739 hasConcept C2910001868 @default.
- W3196133739 hasConcept C38652104 @default.
- W3196133739 hasConcept C41008148 @default.
- W3196133739 hasConcept C557471498 @default.
- W3196133739 hasConcept C69360830 @default.
- W3196133739 hasConcept C71924100 @default.
- W3196133739 hasConcept C80444323 @default.
- W3196133739 hasConcept C86803240 @default.
- W3196133739 hasConceptScore W3196133739C105639569 @default.
- W3196133739 hasConceptScore W3196133739C108170787 @default.
- W3196133739 hasConceptScore W3196133739C108827166 @default.
- W3196133739 hasConceptScore W3196133739C111472728 @default.
- W3196133739 hasConceptScore W3196133739C123201435 @default.
- W3196133739 hasConceptScore W3196133739C132525143 @default.
- W3196133739 hasConceptScore W3196133739C136764020 @default.
- W3196133739 hasConceptScore W3196133739C138885662 @default.
- W3196133739 hasConceptScore W3196133739C142724271 @default.
- W3196133739 hasConceptScore W3196133739C144133560 @default.
- W3196133739 hasConceptScore W3196133739C151730666 @default.
- W3196133739 hasConceptScore W3196133739C169093310 @default.
- W3196133739 hasConceptScore W3196133739C204787440 @default.
- W3196133739 hasConceptScore W3196133739C2522767166 @default.
- W3196133739 hasConceptScore W3196133739C2779343474 @default.
- W3196133739 hasConceptScore W3196133739C2779965156 @default.
- W3196133739 hasConceptScore W3196133739C2780615836 @default.
- W3196133739 hasConceptScore W3196133739C2910001868 @default.
- W3196133739 hasConceptScore W3196133739C38652104 @default.
- W3196133739 hasConceptScore W3196133739C41008148 @default.
- W3196133739 hasConceptScore W3196133739C557471498 @default.
- W3196133739 hasConceptScore W3196133739C69360830 @default.
- W3196133739 hasConceptScore W3196133739C71924100 @default.
- W3196133739 hasConceptScore W3196133739C80444323 @default.
- W3196133739 hasConceptScore W3196133739C86803240 @default.
- W3196133739 hasIssue "9" @default.
- W3196133739 hasLocation W31961337391 @default.
- W3196133739 hasLocation W31961337392 @default.
- W3196133739 hasOpenAccess W3196133739 @default.
- W3196133739 hasPrimaryLocation W31961337391 @default.
- W3196133739 hasRelatedWork W2100062853 @default.
- W3196133739 hasRelatedWork W2247933473 @default.
- W3196133739 hasRelatedWork W2347567917 @default.
- W3196133739 hasRelatedWork W2377791678 @default.
- W3196133739 hasRelatedWork W2528057036 @default.
- W3196133739 hasRelatedWork W2589285783 @default.
- W3196133739 hasRelatedWork W2809477719 @default.