Matches in SemOpenAlex for { <https://semopenalex.org/work/W3196156948> ?p ?o ?g. }
- W3196156948 endingPage "595" @default.
- W3196156948 startingPage "580" @default.
- W3196156948 abstract "It is necessary to execute the safety lifetime analysis to ensure the safety service of the structure. At present, the existing safety lifetime analysis methods used different learning functions to construct a Kriging model in the time interval of interest. The constructed Kriging model can estimate the time-dependent failure probability (TDFP) in any time subinterval accurately. Then the safety lifetime can be estimated by the constructed Kriging model. However, when the time-dependent performance function is highly nonlinear in the time interval of interest, the existing methods need a lot of training samples to construct the Kriging model. Therefore, this paper proposes an advanced single-loop Kriging surrogate model method (ASLK) by combining the adaptive reduction of candidate sample pool (CSP) for safety lifetime analysis. In every possible safety lifetime obtained by dichotomy search, the ASLK is employed to construct a new Kriging model to estimate the corresponding TDFP. To make full use of the known training point information, all existing training points are recorded in the process of searching safety lifetime. When constructing the Kriging model in the time interval of the visited possible safety lifetime by the dichotomy search, the recorded training points falling into the current safety lifetime interval are used as the initial training set. Since it is much easier to build a Kriging model that can accurately estimate the TDFP in a given time interval than the one that can accurately estimate the TDFP in any subinterval, the ASLK is more efficient than the existing methods. At the same time, the ASLK adopts the adaptive CSP reduction strategy, in which the random input sample points with the states accurately identified by the current Kriging model will be deleted from CSP to improve the efficiency further. The example results fully verify the accuracy and efficiency of the proposed method for solving the safety lifetime." @default.
- W3196156948 created "2021-08-30" @default.
- W3196156948 creator A5000903650 @default.
- W3196156948 creator A5016580631 @default.
- W3196156948 creator A5031417213 @default.
- W3196156948 creator A5059507901 @default.
- W3196156948 creator A5066888888 @default.
- W3196156948 date "2021-12-01" @default.
- W3196156948 modified "2023-10-16" @default.
- W3196156948 title "Advanced single-loop Kriging surrogate model method by combining the adaptive reduction of candidate sample pool for safety lifetime analysis" @default.
- W3196156948 cites W1928195746 @default.
- W3196156948 cites W1975369035 @default.
- W3196156948 cites W2003732947 @default.
- W3196156948 cites W2007535697 @default.
- W3196156948 cites W2028738140 @default.
- W3196156948 cites W2049159661 @default.
- W3196156948 cites W2059070214 @default.
- W3196156948 cites W2069233750 @default.
- W3196156948 cites W2070098157 @default.
- W3196156948 cites W2078429918 @default.
- W3196156948 cites W2093625674 @default.
- W3196156948 cites W2110930696 @default.
- W3196156948 cites W2136284614 @default.
- W3196156948 cites W2155117533 @default.
- W3196156948 cites W2338207464 @default.
- W3196156948 cites W2523840203 @default.
- W3196156948 cites W2571901773 @default.
- W3196156948 cites W2586414304 @default.
- W3196156948 cites W2617150676 @default.
- W3196156948 cites W2747348516 @default.
- W3196156948 cites W2784096693 @default.
- W3196156948 cites W2948615095 @default.
- W3196156948 cites W2951225423 @default.
- W3196156948 cites W2952474821 @default.
- W3196156948 cites W2955851813 @default.
- W3196156948 cites W2956012286 @default.
- W3196156948 cites W2965129422 @default.
- W3196156948 cites W2966277375 @default.
- W3196156948 cites W2987497290 @default.
- W3196156948 cites W3007661415 @default.
- W3196156948 cites W3008634575 @default.
- W3196156948 cites W3024998422 @default.
- W3196156948 cites W3045774042 @default.
- W3196156948 cites W3047374373 @default.
- W3196156948 cites W3122455945 @default.
- W3196156948 cites W3124776478 @default.
- W3196156948 cites W3127246880 @default.
- W3196156948 doi "https://doi.org/10.1016/j.apm.2021.08.019" @default.
- W3196156948 hasPublicationYear "2021" @default.
- W3196156948 type Work @default.
- W3196156948 sameAs 3196156948 @default.
- W3196156948 citedByCount "4" @default.
- W3196156948 countsByYear W31961569482022 @default.
- W3196156948 countsByYear W31961569482023 @default.
- W3196156948 crossrefType "journal-article" @default.
- W3196156948 hasAuthorship W3196156948A5000903650 @default.
- W3196156948 hasAuthorship W3196156948A5016580631 @default.
- W3196156948 hasAuthorship W3196156948A5031417213 @default.
- W3196156948 hasAuthorship W3196156948A5059507901 @default.
- W3196156948 hasAuthorship W3196156948A5066888888 @default.
- W3196156948 hasConcept C111335779 @default.
- W3196156948 hasConcept C111919701 @default.
- W3196156948 hasConcept C114614502 @default.
- W3196156948 hasConcept C119857082 @default.
- W3196156948 hasConcept C127413603 @default.
- W3196156948 hasConcept C131675550 @default.
- W3196156948 hasConcept C185592680 @default.
- W3196156948 hasConcept C198531522 @default.
- W3196156948 hasConcept C200601418 @default.
- W3196156948 hasConcept C2524010 @default.
- W3196156948 hasConcept C2778067643 @default.
- W3196156948 hasConcept C33923547 @default.
- W3196156948 hasConcept C41008148 @default.
- W3196156948 hasConcept C43617362 @default.
- W3196156948 hasConcept C81692654 @default.
- W3196156948 hasConcept C98045186 @default.
- W3196156948 hasConceptScore W3196156948C111335779 @default.
- W3196156948 hasConceptScore W3196156948C111919701 @default.
- W3196156948 hasConceptScore W3196156948C114614502 @default.
- W3196156948 hasConceptScore W3196156948C119857082 @default.
- W3196156948 hasConceptScore W3196156948C127413603 @default.
- W3196156948 hasConceptScore W3196156948C131675550 @default.
- W3196156948 hasConceptScore W3196156948C185592680 @default.
- W3196156948 hasConceptScore W3196156948C198531522 @default.
- W3196156948 hasConceptScore W3196156948C200601418 @default.
- W3196156948 hasConceptScore W3196156948C2524010 @default.
- W3196156948 hasConceptScore W3196156948C2778067643 @default.
- W3196156948 hasConceptScore W3196156948C33923547 @default.
- W3196156948 hasConceptScore W3196156948C41008148 @default.
- W3196156948 hasConceptScore W3196156948C43617362 @default.
- W3196156948 hasConceptScore W3196156948C81692654 @default.
- W3196156948 hasConceptScore W3196156948C98045186 @default.
- W3196156948 hasFunder F4320321001 @default.
- W3196156948 hasFunder F4320335960 @default.
- W3196156948 hasLocation W31961569481 @default.
- W3196156948 hasOpenAccess W3196156948 @default.
- W3196156948 hasPrimaryLocation W31961569481 @default.
- W3196156948 hasRelatedWork W2025967929 @default.