Matches in SemOpenAlex for { <https://semopenalex.org/work/W3196167777> ?p ?o ?g. }
- W3196167777 endingPage "9507" @default.
- W3196167777 startingPage "9507" @default.
- W3196167777 abstract "This study aimed to evaluate classification algorithms to predict largemouth bass (Micropterus salmoides) occurrence in South Korea. Fish monitoring and environmental data (temperature, precipitation, flow rate, water quality, elevation, and slope) were collected from 581 locations throughout four major river basins for 5 years (2011–2015). Initially, 13 classification models built in the caret package were evaluated for predicting largemouth bass occurrence. Based on the accuracy (>0.8) and kappa (>0.5) criteria, the top three classification algorithms (i.e., random forest (rf), C5.0, and conditional inference random forest) were selected to develop ensemble models. However, combining the best individual models did not work better than the best individual model (rf) at predicting the frequency of largemouth bass occurrence. Additionally, annual mean temperature (12.1 °C) and fall mean temperature (13.6 °C) were the most important environmental variables to discriminate the presence and absence of largemouth bass. The evaluation process proposed in this study will be useful to select a prediction model for the prediction of freshwater fish occurrence but will require further study to ensure ecological reliability." @default.
- W3196167777 created "2021-08-30" @default.
- W3196167777 creator A5021666962 @default.
- W3196167777 creator A5034935740 @default.
- W3196167777 creator A5056891829 @default.
- W3196167777 creator A5060540152 @default.
- W3196167777 creator A5062176328 @default.
- W3196167777 creator A5063478541 @default.
- W3196167777 date "2021-08-24" @default.
- W3196167777 modified "2023-09-27" @default.
- W3196167777 title "Evaluation of Classification Algorithms to Predict Largemouth Bass (Micropterus salmoides) Occurrence" @default.
- W3196167777 cites W13924619 @default.
- W3196167777 cites W1579439470 @default.
- W3196167777 cites W1803434986 @default.
- W3196167777 cites W1827063654 @default.
- W3196167777 cites W1831050183 @default.
- W3196167777 cites W1974105243 @default.
- W3196167777 cites W1986850513 @default.
- W3196167777 cites W1989620014 @default.
- W3196167777 cites W1999107174 @default.
- W3196167777 cites W2001992064 @default.
- W3196167777 cites W2002758482 @default.
- W3196167777 cites W2024405397 @default.
- W3196167777 cites W2059975192 @default.
- W3196167777 cites W2066154085 @default.
- W3196167777 cites W2067934398 @default.
- W3196167777 cites W2072381293 @default.
- W3196167777 cites W2073443214 @default.
- W3196167777 cites W2075454604 @default.
- W3196167777 cites W2076118331 @default.
- W3196167777 cites W2080632728 @default.
- W3196167777 cites W2096867729 @default.
- W3196167777 cites W2105700602 @default.
- W3196167777 cites W2105742471 @default.
- W3196167777 cites W2108166490 @default.
- W3196167777 cites W2108869431 @default.
- W3196167777 cites W2128827287 @default.
- W3196167777 cites W2141997358 @default.
- W3196167777 cites W2145947806 @default.
- W3196167777 cites W2150461836 @default.
- W3196167777 cites W2150985248 @default.
- W3196167777 cites W2155806188 @default.
- W3196167777 cites W2159482629 @default.
- W3196167777 cites W2162026034 @default.
- W3196167777 cites W2162079413 @default.
- W3196167777 cites W2167055186 @default.
- W3196167777 cites W2184760592 @default.
- W3196167777 cites W2190238229 @default.
- W3196167777 cites W2912766985 @default.
- W3196167777 cites W2945240356 @default.
- W3196167777 cites W2949666627 @default.
- W3196167777 cites W2982353841 @default.
- W3196167777 cites W3003960167 @default.
- W3196167777 cites W3035206607 @default.
- W3196167777 cites W3044338296 @default.
- W3196167777 cites W3110219282 @default.
- W3196167777 doi "https://doi.org/10.3390/su13179507" @default.
- W3196167777 hasPublicationYear "2021" @default.
- W3196167777 type Work @default.
- W3196167777 sameAs 3196167777 @default.
- W3196167777 citedByCount "2" @default.
- W3196167777 countsByYear W31961677772022 @default.
- W3196167777 crossrefType "journal-article" @default.
- W3196167777 hasAuthorship W3196167777A5021666962 @default.
- W3196167777 hasAuthorship W3196167777A5034935740 @default.
- W3196167777 hasAuthorship W3196167777A5056891829 @default.
- W3196167777 hasAuthorship W3196167777A5060540152 @default.
- W3196167777 hasAuthorship W3196167777A5062176328 @default.
- W3196167777 hasAuthorship W3196167777A5063478541 @default.
- W3196167777 hasBestOaLocation W31961677771 @default.
- W3196167777 hasConcept C105795698 @default.
- W3196167777 hasConcept C119857082 @default.
- W3196167777 hasConcept C154945302 @default.
- W3196167777 hasConcept C169258074 @default.
- W3196167777 hasConcept C2776214188 @default.
- W3196167777 hasConcept C2777182073 @default.
- W3196167777 hasConcept C2780716849 @default.
- W3196167777 hasConcept C33923547 @default.
- W3196167777 hasConcept C39432304 @default.
- W3196167777 hasConcept C41008148 @default.
- W3196167777 hasConcept C505870484 @default.
- W3196167777 hasConcept C86803240 @default.
- W3196167777 hasConceptScore W3196167777C105795698 @default.
- W3196167777 hasConceptScore W3196167777C119857082 @default.
- W3196167777 hasConceptScore W3196167777C154945302 @default.
- W3196167777 hasConceptScore W3196167777C169258074 @default.
- W3196167777 hasConceptScore W3196167777C2776214188 @default.
- W3196167777 hasConceptScore W3196167777C2777182073 @default.
- W3196167777 hasConceptScore W3196167777C2780716849 @default.
- W3196167777 hasConceptScore W3196167777C33923547 @default.
- W3196167777 hasConceptScore W3196167777C39432304 @default.
- W3196167777 hasConceptScore W3196167777C41008148 @default.
- W3196167777 hasConceptScore W3196167777C505870484 @default.
- W3196167777 hasConceptScore W3196167777C86803240 @default.
- W3196167777 hasIssue "17" @default.
- W3196167777 hasLocation W31961677771 @default.
- W3196167777 hasOpenAccess W3196167777 @default.
- W3196167777 hasPrimaryLocation W31961677771 @default.