Matches in SemOpenAlex for { <https://semopenalex.org/work/W3196179611> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W3196179611 endingPage "104779" @default.
- W3196179611 startingPage "104779" @default.
- W3196179611 abstract "The technical performance of resistance-training (RT) movement is commonly monitored through visual assessment and feedback by trained practitioners or by individual self-evaluation. However, both approaches are limited due to their subjectivity, inability to monitor multiple joints simultaneously, and dependency on the assessor's or exerciser's experience and skill. Portable data collection devices and machine learning (ML) have been combined to overcome these limitations by providing objective assessments for RT movement performance. This systematic review evaluates systems developed for providing objective, automatic assessment for RT movements used to improve physical performance and/or rehabilitation in otherwise healthy individuals. Databases searched included Scopus, PubMed and Engineering Village. From 363 papers initially identified, 13 met the inclusion and exclusion criteria. Information extracted from the collated papers included the experimental protocols, data processing, ML model development methodology and movement classification performance. Identified movement assessment systems ranged in classification performance (accuracy of 70%–90% for most classifiers). However, several methodological errors in the development of the ML models were identified, and additional aspects such as model interpretability or generalisability were often neglected. Future ML models should adopt the correct developmental methodology and provide interpretable and generalisable models for application in the RT environment. • Assessment systems achieved mixed results in movement classification performance. • Methodological errors were present in the development of assessment systems. • Interpretability and generalisability of assessment systems was often neglected. • Recommendations from this review can guide development of assessment systems." @default.
- W3196179611 created "2021-08-30" @default.
- W3196179611 creator A5016030718 @default.
- W3196179611 creator A5042435999 @default.
- W3196179611 creator A5048017992 @default.
- W3196179611 date "2021-10-01" @default.
- W3196179611 modified "2023-10-16" @default.
- W3196179611 title "Systematic review of automatic assessment systems for resistance-training movement performance: A data science perspective" @default.
- W3196179611 cites W2002856496 @default.
- W3196179611 cites W2007178835 @default.
- W3196179611 cites W2017044395 @default.
- W3196179611 cites W2017063581 @default.
- W3196179611 cites W2017337590 @default.
- W3196179611 cites W2021761995 @default.
- W3196179611 cites W2025904271 @default.
- W3196179611 cites W2039664200 @default.
- W3196179611 cites W2076556084 @default.
- W3196179611 cites W2114315281 @default.
- W3196179611 cites W2141007997 @default.
- W3196179611 cites W2154290668 @default.
- W3196179611 cites W2161374186 @default.
- W3196179611 cites W2166107799 @default.
- W3196179611 cites W2605528433 @default.
- W3196179611 cites W2614557479 @default.
- W3196179611 cites W2614559277 @default.
- W3196179611 cites W2746041672 @default.
- W3196179611 cites W2792932721 @default.
- W3196179611 cites W2891489434 @default.
- W3196179611 cites W2897764506 @default.
- W3196179611 cites W2909861393 @default.
- W3196179611 cites W2999039416 @default.
- W3196179611 cites W2739055254 @default.
- W3196179611 doi "https://doi.org/10.1016/j.compbiomed.2021.104779" @default.
- W3196179611 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34454166" @default.
- W3196179611 hasPublicationYear "2021" @default.
- W3196179611 type Work @default.
- W3196179611 sameAs 3196179611 @default.
- W3196179611 citedByCount "1" @default.
- W3196179611 countsByYear W31961796112022 @default.
- W3196179611 crossrefType "journal-article" @default.
- W3196179611 hasAuthorship W3196179611A5016030718 @default.
- W3196179611 hasAuthorship W3196179611A5042435999 @default.
- W3196179611 hasAuthorship W3196179611A5048017992 @default.
- W3196179611 hasConcept C119857082 @default.
- W3196179611 hasConcept C154945302 @default.
- W3196179611 hasConcept C17744445 @default.
- W3196179611 hasConcept C189708586 @default.
- W3196179611 hasConcept C199539241 @default.
- W3196179611 hasConcept C2779473830 @default.
- W3196179611 hasConcept C2781067378 @default.
- W3196179611 hasConcept C41008148 @default.
- W3196179611 hasConceptScore W3196179611C119857082 @default.
- W3196179611 hasConceptScore W3196179611C154945302 @default.
- W3196179611 hasConceptScore W3196179611C17744445 @default.
- W3196179611 hasConceptScore W3196179611C189708586 @default.
- W3196179611 hasConceptScore W3196179611C199539241 @default.
- W3196179611 hasConceptScore W3196179611C2779473830 @default.
- W3196179611 hasConceptScore W3196179611C2781067378 @default.
- W3196179611 hasConceptScore W3196179611C41008148 @default.
- W3196179611 hasLocation W31961796111 @default.
- W3196179611 hasOpenAccess W3196179611 @default.
- W3196179611 hasPrimaryLocation W31961796111 @default.
- W3196179611 hasRelatedWork W2605281151 @default.
- W3196179611 hasRelatedWork W3006943036 @default.
- W3196179611 hasRelatedWork W3012234327 @default.
- W3196179611 hasRelatedWork W3119715496 @default.
- W3196179611 hasRelatedWork W3191046242 @default.
- W3196179611 hasRelatedWork W3203961807 @default.
- W3196179611 hasRelatedWork W4200511449 @default.
- W3196179611 hasRelatedWork W4206534706 @default.
- W3196179611 hasRelatedWork W4229079080 @default.
- W3196179611 hasRelatedWork W4294031299 @default.
- W3196179611 hasVolume "137" @default.
- W3196179611 isParatext "false" @default.
- W3196179611 isRetracted "false" @default.
- W3196179611 magId "3196179611" @default.
- W3196179611 workType "article" @default.