Matches in SemOpenAlex for { <https://semopenalex.org/work/W3196218081> ?p ?o ?g. }
Showing items 1 to 99 of
99
with 100 items per page.
- W3196218081 endingPage "3824" @default.
- W3196218081 startingPage "3824" @default.
- W3196218081 abstract "Background: Acute respiratory distress syndrome (ARDS) is an intense inflammatory process of the lungs. Most ARDS patients require mechanical ventilation (MV). Few studies have investigated the prediction of MV duration over time. We aimed at characterizing the best early scenario during the first two days in the intensive care unit (ICU) to predict MV duration after ARDS onset using supervised machine learning (ML) approaches. Methods: For model description, we extracted data from the first 3 ICU days after ARDS diagnosis from patients included in the publicly available MIMIC-III database. Disease progression was tracked along those 3 ICU days to assess lung severity according to Berlin criteria. Three robust supervised ML techniques were implemented using Python 3.7 (Light Gradient Boosting Machine (LightGBM); Random Forest (RF); and eXtreme Gradient Boosting (XGBoost)) for predicting MV duration. For external validation, we used the publicly available multicenter database eICU. Results: A total of 2466 and 5153 patients in MIMIC-III and eICU databases, respectively, received MV for >48 h. Median MV duration of extracted patients was 6.5 days (IQR 4.4–9.8 days) in MIMIC-III and 5.0 days (IQR 3.0–9.0 days) in eICU. LightGBM was the best model in predicting MV duration after ARDS onset in MIMIC-III with a root mean square error (RMSE) of 6.10–6.41 days, and it was externally validated in eICU with RMSE of 5.87–6.08 days. The best early prediction model was obtained with data captured in the 2nd day. Conclusions: Supervised ML can make early and accurate predictions of MV duration in ARDS after onset over time across ICUs. Supervised ML models might have important implications for optimizing ICU resource utilization and high acute cost reduction of MV." @default.
- W3196218081 created "2021-08-30" @default.
- W3196218081 creator A5009552575 @default.
- W3196218081 creator A5011138595 @default.
- W3196218081 creator A5012783740 @default.
- W3196218081 date "2021-08-26" @default.
- W3196218081 modified "2023-10-01" @default.
- W3196218081 title "Predicting Duration of Mechanical Ventilation in Acute Respiratory Distress Syndrome Using Supervised Machine Learning" @default.
- W3196218081 cites W1803784511 @default.
- W3196218081 cites W1985372952 @default.
- W3196218081 cites W1989471045 @default.
- W3196218081 cites W2000400005 @default.
- W3196218081 cites W2005555382 @default.
- W3196218081 cites W2048487518 @default.
- W3196218081 cites W2060947741 @default.
- W3196218081 cites W2062327003 @default.
- W3196218081 cites W2068854215 @default.
- W3196218081 cites W2150765167 @default.
- W3196218081 cites W2169732472 @default.
- W3196218081 cites W2296854210 @default.
- W3196218081 cites W2306501603 @default.
- W3196218081 cites W2327683188 @default.
- W3196218081 cites W2416984047 @default.
- W3196218081 cites W2515214230 @default.
- W3196218081 cites W2780186126 @default.
- W3196218081 cites W2797010621 @default.
- W3196218081 cites W2800180227 @default.
- W3196218081 cites W2905620417 @default.
- W3196218081 cites W2921588437 @default.
- W3196218081 cites W2943961756 @default.
- W3196218081 cites W2997942914 @default.
- W3196218081 cites W3012662704 @default.
- W3196218081 cites W3038139858 @default.
- W3196218081 cites W3044716907 @default.
- W3196218081 cites W3092631874 @default.
- W3196218081 cites W3097673055 @default.
- W3196218081 cites W3102476541 @default.
- W3196218081 cites W3151987063 @default.
- W3196218081 cites W3152569814 @default.
- W3196218081 doi "https://doi.org/10.3390/jcm10173824" @default.
- W3196218081 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8432117" @default.
- W3196218081 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34501270" @default.
- W3196218081 hasPublicationYear "2021" @default.
- W3196218081 type Work @default.
- W3196218081 sameAs 3196218081 @default.
- W3196218081 citedByCount "15" @default.
- W3196218081 countsByYear W31962180812022 @default.
- W3196218081 countsByYear W31962180812023 @default.
- W3196218081 crossrefType "journal-article" @default.
- W3196218081 hasAuthorship W3196218081A5009552575 @default.
- W3196218081 hasAuthorship W3196218081A5011138595 @default.
- W3196218081 hasAuthorship W3196218081A5012783740 @default.
- W3196218081 hasBestOaLocation W31962180811 @default.
- W3196218081 hasConcept C119857082 @default.
- W3196218081 hasConcept C126322002 @default.
- W3196218081 hasConcept C169258074 @default.
- W3196218081 hasConcept C2776348555 @default.
- W3196218081 hasConcept C2776376669 @default.
- W3196218081 hasConcept C2777080012 @default.
- W3196218081 hasConcept C2777714996 @default.
- W3196218081 hasConcept C2909621147 @default.
- W3196218081 hasConcept C41008148 @default.
- W3196218081 hasConcept C70153297 @default.
- W3196218081 hasConcept C71924100 @default.
- W3196218081 hasConceptScore W3196218081C119857082 @default.
- W3196218081 hasConceptScore W3196218081C126322002 @default.
- W3196218081 hasConceptScore W3196218081C169258074 @default.
- W3196218081 hasConceptScore W3196218081C2776348555 @default.
- W3196218081 hasConceptScore W3196218081C2776376669 @default.
- W3196218081 hasConceptScore W3196218081C2777080012 @default.
- W3196218081 hasConceptScore W3196218081C2777714996 @default.
- W3196218081 hasConceptScore W3196218081C2909621147 @default.
- W3196218081 hasConceptScore W3196218081C41008148 @default.
- W3196218081 hasConceptScore W3196218081C70153297 @default.
- W3196218081 hasConceptScore W3196218081C71924100 @default.
- W3196218081 hasIssue "17" @default.
- W3196218081 hasLocation W31962180811 @default.
- W3196218081 hasLocation W31962180812 @default.
- W3196218081 hasLocation W31962180813 @default.
- W3196218081 hasLocation W31962180814 @default.
- W3196218081 hasOpenAccess W3196218081 @default.
- W3196218081 hasPrimaryLocation W31962180811 @default.
- W3196218081 hasRelatedWork W2333679899 @default.
- W3196218081 hasRelatedWork W2782417886 @default.
- W3196218081 hasRelatedWork W2791953160 @default.
- W3196218081 hasRelatedWork W3031770939 @default.
- W3196218081 hasRelatedWork W3043152743 @default.
- W3196218081 hasRelatedWork W3129568388 @default.
- W3196218081 hasRelatedWork W4200392079 @default.
- W3196218081 hasRelatedWork W4210258162 @default.
- W3196218081 hasRelatedWork W4256113959 @default.
- W3196218081 hasRelatedWork W4312113552 @default.
- W3196218081 hasVolume "10" @default.
- W3196218081 isParatext "false" @default.
- W3196218081 isRetracted "false" @default.
- W3196218081 magId "3196218081" @default.
- W3196218081 workType "article" @default.