Matches in SemOpenAlex for { <https://semopenalex.org/work/W3196257654> ?p ?o ?g. }
- W3196257654 abstract "Data clustering is one of the most popular branches in machine learning and data analysis. Partitioning-based type of clustering algorithms, such as K-means, is prone to the problem of producing a set of clusters that is far from perfect due to its probabilistic nature. The clustering process starts with some random partitions at the beginning, and it tries to improve the partitions progressively. Different initial partitions can result in different final clusters. Trying through all the possible candidate clusters for the perfect result is too time consuming. Metaheuristic algorithm aims to search for global optimum in high dimensional problems. Meta-heuristic algorithm has been successfully implemented on data clustering problems seeking a near optimal solution in terms of quality of the resultant clusters. Recently, nature-inspired algorithms have been proposed and utilized for solving the optimization problems in general, and data clustering problem in particular. Black Hole (BH) optimization algorithm has been underlined as a solution for data clustering problems. The BH is a population-based metaheuristic that emulates the phenomenon of the BH in the universe. In this instance, every solution in motion within the search space represents an individual star. The original BH has shown a superior performance when applied on a benchmark dataset; however, it lacks exploration capabilities. In keeping with this limitation, this study proposes a new variant of BH through two different modifications on the original BH. The first modification is the integration of BH algorithm and levy flight, which result in data clustering method, namely “Levy Flight Black Hole (LBH)”. In LBH, the movement of each star mainly depends on the step size generated by the Levy distribution. Therefore, the star explores a far area from the current BH when the value step size is big, and vice versa. The second modification is the multiple population BH that is proposed as a generalization to the BH algorithm, in which the algorithm was not reliant upon the best solution but rather on a set of best solutions generated, called “MBH”. As a result, a new variant of BH for high dimensional datasets which is called multiple population levy black hole (MLBH) has been proposed for handling normal and high dimensional datasets through the integration of LBH and MBH. The obtained results were compared with the BH and previous optimization algorithms for both test functions as well as data clustering in terms of normal and high dimensional datasets. Overall, the experimental outcomes and analysis of the obtained results indicated that the proposed algorithms have satisfied most of the required criteria. Furthermore, the results revealed a high convergence rate, upon which the algorithm’s performance was subjected to data clustering problems and investigated using six real datasets. The datasets were retrieved from the UCI machine-learning laboratory. The future research directions are also discussed in the study." @default.
- W3196257654 created "2021-08-30" @default.
- W3196257654 creator A5071428624 @default.
- W3196257654 creator A5082263783 @default.
- W3196257654 date "2020-06-01" @default.
- W3196257654 modified "2023-09-26" @default.
- W3196257654 title "A new variant of black hole algorithm based on multi population and levy flight for clustering problem" @default.
- W3196257654 cites W1200869358 @default.
- W3196257654 cites W145755714 @default.
- W3196257654 cites W1485301293 @default.
- W3196257654 cites W1496373884 @default.
- W3196257654 cites W1523741643 @default.
- W3196257654 cites W1531910981 @default.
- W3196257654 cites W1555689267 @default.
- W3196257654 cites W1567879655 @default.
- W3196257654 cites W1568834902 @default.
- W3196257654 cites W1570544825 @default.
- W3196257654 cites W1585002319 @default.
- W3196257654 cites W1587734438 @default.
- W3196257654 cites W1594087472 @default.
- W3196257654 cites W1613273921 @default.
- W3196257654 cites W1625914768 @default.
- W3196257654 cites W1639811918 @default.
- W3196257654 cites W1783662041 @default.
- W3196257654 cites W18216792 @default.
- W3196257654 cites W1855696278 @default.
- W3196257654 cites W1918100026 @default.
- W3196257654 cites W1974894116 @default.
- W3196257654 cites W1974895230 @default.
- W3196257654 cites W1976744965 @default.
- W3196257654 cites W1978695274 @default.
- W3196257654 cites W1979357074 @default.
- W3196257654 cites W1982575696 @default.
- W3196257654 cites W1984762043 @default.
- W3196257654 cites W1988072419 @default.
- W3196257654 cites W1990110642 @default.
- W3196257654 cites W1991359419 @default.
- W3196257654 cites W1993885071 @default.
- W3196257654 cites W1997217298 @default.
- W3196257654 cites W1997421803 @default.
- W3196257654 cites W2000884336 @default.
- W3196257654 cites W2004011155 @default.
- W3196257654 cites W2004061489 @default.
- W3196257654 cites W2007898191 @default.
- W3196257654 cites W2011911735 @default.
- W3196257654 cites W2017556774 @default.
- W3196257654 cites W2019617030 @default.
- W3196257654 cites W2022971014 @default.
- W3196257654 cites W2024060531 @default.
- W3196257654 cites W2024179359 @default.
- W3196257654 cites W2028916688 @default.
- W3196257654 cites W2030912188 @default.
- W3196257654 cites W2031183907 @default.
- W3196257654 cites W2035967026 @default.
- W3196257654 cites W2044512962 @default.
- W3196257654 cites W2048759253 @default.
- W3196257654 cites W2048882317 @default.
- W3196257654 cites W2051224630 @default.
- W3196257654 cites W2053677366 @default.
- W3196257654 cites W2054984152 @default.
- W3196257654 cites W2055885994 @default.
- W3196257654 cites W2056811412 @default.
- W3196257654 cites W2057035153 @default.
- W3196257654 cites W2058290880 @default.
- W3196257654 cites W2061438946 @default.
- W3196257654 cites W2070144599 @default.
- W3196257654 cites W2071965987 @default.
- W3196257654 cites W2072789685 @default.
- W3196257654 cites W2072955302 @default.
- W3196257654 cites W2073731758 @default.
- W3196257654 cites W2083843541 @default.
- W3196257654 cites W2084231765 @default.
- W3196257654 cites W2087684630 @default.
- W3196257654 cites W2088851040 @default.
- W3196257654 cites W2089116750 @default.
- W3196257654 cites W2092890616 @default.
- W3196257654 cites W2094521916 @default.
- W3196257654 cites W2094861619 @default.
- W3196257654 cites W2097703791 @default.
- W3196257654 cites W2098477891 @default.
- W3196257654 cites W2099607215 @default.
- W3196257654 cites W2100120684 @default.
- W3196257654 cites W2101593221 @default.
- W3196257654 cites W2101657530 @default.
- W3196257654 cites W2103453943 @default.
- W3196257654 cites W2109363337 @default.
- W3196257654 cites W2109674392 @default.
- W3196257654 cites W2109936159 @default.
- W3196257654 cites W2114880178 @default.
- W3196257654 cites W2115350182 @default.
- W3196257654 cites W2118840131 @default.
- W3196257654 cites W2122821937 @default.
- W3196257654 cites W2128985829 @default.
- W3196257654 cites W2133241531 @default.
- W3196257654 cites W2140367444 @default.
- W3196257654 cites W2140727865 @default.
- W3196257654 cites W2141012957 @default.
- W3196257654 cites W2142784150 @default.
- W3196257654 cites W2143503407 @default.
- W3196257654 cites W2143560894 @default.