Matches in SemOpenAlex for { <https://semopenalex.org/work/W3196300521> ?p ?o ?g. }
- W3196300521 endingPage "120355" @default.
- W3196300521 startingPage "120355" @default.
- W3196300521 abstract "The mortality of ovarian cancer is closely related to its poor rate of early detection. In the search of an efficient diagnosis method, Raman spectroscopy of blood features as a promising technique allowing simple, rapid, minimally-invasive and cost-effective detection of cancers, in particular ovarian cancer. Although Raman spectroscopy has been demonstrated to be effective to detect ovarian cancers with respect to normal controls, a binary classification remains idealized with respect to the real clinical practice. This work considered a population of 95 woman patients initially suspected of an ovarian cancer and finally fixed with a cancer or a cyst. Additionally, 79 normal controls completed the ensemble of samples. Such sample collection proposed us a study case where a ternary classification should be realized with Raman spectroscopy of the collected blood samples coupled with suitable spectroscopic data treatment algorithms. In the medical as well as data points of view, the appearance of the cyst case considerably reduces the distances among the different populations and makes their distinction much more difficult, since the intermediate cyst case can share the specific features of the both cancer and normal cases. After a proper spectrum pretreatment, we first demonstrated the evidence of different behaviors among the Raman spectra of the 3 types of samples. Such difference was further visualized in a high dimensional space, where the data points of the cancer and the normal cases are separately clustered, whereas the data of the cyst case were scattered into the areas respectively occupied by the cancer and normal cases. We finally developed and tested an ensemble of models for a ternary classification with 2 consequent steps of binary classifications, based on machine learning algorithms, allowing identification with sensitivity and specificity of 81.0% and 97.3% for cancer samples, 63.6% and 91.5% for cyst samples, 100% and 90.6% for normal samples." @default.
- W3196300521 created "2021-09-13" @default.
- W3196300521 creator A5018468999 @default.
- W3196300521 creator A5020496465 @default.
- W3196300521 creator A5023840637 @default.
- W3196300521 creator A5030012172 @default.
- W3196300521 creator A5034700045 @default.
- W3196300521 creator A5046597133 @default.
- W3196300521 creator A5052663273 @default.
- W3196300521 creator A5055379843 @default.
- W3196300521 creator A5074325970 @default.
- W3196300521 creator A5076501465 @default.
- W3196300521 creator A5077456526 @default.
- W3196300521 creator A5082090695 @default.
- W3196300521 creator A5083373818 @default.
- W3196300521 date "2022-01-01" @default.
- W3196300521 modified "2023-10-12" @default.
- W3196300521 title "Screening ovarian cancers with Raman spectroscopy of blood plasma coupled with machine learning data processing" @default.
- W3196300521 cites W1119887047 @default.
- W3196300521 cites W1580904219 @default.
- W3196300521 cites W1935238887 @default.
- W3196300521 cites W1970412285 @default.
- W3196300521 cites W1975903162 @default.
- W3196300521 cites W1977182656 @default.
- W3196300521 cites W2015452969 @default.
- W3196300521 cites W2015669292 @default.
- W3196300521 cites W2032027336 @default.
- W3196300521 cites W2038707973 @default.
- W3196300521 cites W2049281130 @default.
- W3196300521 cites W2055736963 @default.
- W3196300521 cites W2070928663 @default.
- W3196300521 cites W2082289296 @default.
- W3196300521 cites W2083940813 @default.
- W3196300521 cites W2099348322 @default.
- W3196300521 cites W2117739869 @default.
- W3196300521 cites W2121778128 @default.
- W3196300521 cites W2122028423 @default.
- W3196300521 cites W2131703449 @default.
- W3196300521 cites W2134285663 @default.
- W3196300521 cites W2142659066 @default.
- W3196300521 cites W2146711830 @default.
- W3196300521 cites W2150460801 @default.
- W3196300521 cites W2159711399 @default.
- W3196300521 cites W2214802907 @default.
- W3196300521 cites W2295097024 @default.
- W3196300521 cites W2400263832 @default.
- W3196300521 cites W2506133648 @default.
- W3196300521 cites W2606314294 @default.
- W3196300521 cites W2620308334 @default.
- W3196300521 cites W2735403657 @default.
- W3196300521 cites W2770822017 @default.
- W3196300521 cites W2807649309 @default.
- W3196300521 cites W2852377116 @default.
- W3196300521 cites W2889338261 @default.
- W3196300521 cites W2889646458 @default.
- W3196300521 cites W2892600563 @default.
- W3196300521 cites W2900927048 @default.
- W3196300521 cites W2905529905 @default.
- W3196300521 cites W2913819670 @default.
- W3196300521 cites W2921606978 @default.
- W3196300521 cites W2942165081 @default.
- W3196300521 cites W2947184269 @default.
- W3196300521 cites W2979517544 @default.
- W3196300521 cites W3043051987 @default.
- W3196300521 cites W3106650620 @default.
- W3196300521 cites W3167033318 @default.
- W3196300521 cites W4210987384 @default.
- W3196300521 cites W4238768614 @default.
- W3196300521 doi "https://doi.org/10.1016/j.saa.2021.120355" @default.
- W3196300521 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34530200" @default.
- W3196300521 hasPublicationYear "2022" @default.
- W3196300521 type Work @default.
- W3196300521 sameAs 3196300521 @default.
- W3196300521 citedByCount "15" @default.
- W3196300521 countsByYear W31963005212022 @default.
- W3196300521 countsByYear W31963005212023 @default.
- W3196300521 crossrefType "journal-article" @default.
- W3196300521 hasAuthorship W3196300521A5018468999 @default.
- W3196300521 hasAuthorship W3196300521A5020496465 @default.
- W3196300521 hasAuthorship W3196300521A5023840637 @default.
- W3196300521 hasAuthorship W3196300521A5030012172 @default.
- W3196300521 hasAuthorship W3196300521A5034700045 @default.
- W3196300521 hasAuthorship W3196300521A5046597133 @default.
- W3196300521 hasAuthorship W3196300521A5052663273 @default.
- W3196300521 hasAuthorship W3196300521A5055379843 @default.
- W3196300521 hasAuthorship W3196300521A5074325970 @default.
- W3196300521 hasAuthorship W3196300521A5076501465 @default.
- W3196300521 hasAuthorship W3196300521A5077456526 @default.
- W3196300521 hasAuthorship W3196300521A5082090695 @default.
- W3196300521 hasAuthorship W3196300521A5083373818 @default.
- W3196300521 hasConcept C120665830 @default.
- W3196300521 hasConcept C121332964 @default.
- W3196300521 hasConcept C121608353 @default.
- W3196300521 hasConcept C126322002 @default.
- W3196300521 hasConcept C142724271 @default.
- W3196300521 hasConcept C2780427987 @default.
- W3196300521 hasConcept C2780597408 @default.
- W3196300521 hasConcept C2908647359 @default.