Matches in SemOpenAlex for { <https://semopenalex.org/work/W3196329596> ?p ?o ?g. }
- W3196329596 endingPage "5823" @default.
- W3196329596 startingPage "5823" @default.
- W3196329596 abstract "In the paper, an attempt was made to use methods of artificial neural networks (ANN) and Fourier transform infrared spectroscopy (FTIR) to identify raspberry powders that are different from each other in terms of the amount and the type of polysaccharide. Spectra in the absorbance function (FTIR) were prepared as well as training sets, taking into account the structure of microparticles acquired from microscopic images with Scanning Electron Microscopy (SEM). In addition to the above, Multi-Layer Perceptron Networks (MLPNs) with a set of texture descriptors (machine learning) and Convolution Neural Network (CNN) with bitmap (deep learning) were devised, which is an innovative attitude to solving this issue. The aim of the paper was to create MLPN and CNN neural models, which are characterized by a high efficiency of classification. It translates into recognizing microparticles (obtaining their homogeneity) of raspberry powders on the basis of the texture of the image pixel." @default.
- W3196329596 created "2021-09-13" @default.
- W3196329596 creator A5009896600 @default.
- W3196329596 creator A5047501783 @default.
- W3196329596 creator A5057287842 @default.
- W3196329596 creator A5061382891 @default.
- W3196329596 creator A5074435227 @default.
- W3196329596 creator A5076896351 @default.
- W3196329596 date "2021-08-30" @default.
- W3196329596 modified "2023-10-01" @default.
- W3196329596 title "Deep and Machine Learning Using SEM, FTIR, and Texture Analysis to Detect Polysaccharide in Raspberry Powders" @default.
- W3196329596 cites W1907725930 @default.
- W3196329596 cites W1978877989 @default.
- W3196329596 cites W1998691748 @default.
- W3196329596 cites W2002011878 @default.
- W3196329596 cites W2043602570 @default.
- W3196329596 cites W2044465660 @default.
- W3196329596 cites W2059432853 @default.
- W3196329596 cites W2064781985 @default.
- W3196329596 cites W2100860054 @default.
- W3196329596 cites W2110604072 @default.
- W3196329596 cites W2127227873 @default.
- W3196329596 cites W2157141627 @default.
- W3196329596 cites W2258260701 @default.
- W3196329596 cites W2410979937 @default.
- W3196329596 cites W2415062915 @default.
- W3196329596 cites W2509411710 @default.
- W3196329596 cites W2810549927 @default.
- W3196329596 cites W2898964089 @default.
- W3196329596 cites W2909125467 @default.
- W3196329596 cites W2922531976 @default.
- W3196329596 cites W2930675469 @default.
- W3196329596 cites W2931503046 @default.
- W3196329596 cites W2935195134 @default.
- W3196329596 cites W2956328670 @default.
- W3196329596 cites W2963806442 @default.
- W3196329596 cites W2973433297 @default.
- W3196329596 cites W2995525027 @default.
- W3196329596 cites W2996442329 @default.
- W3196329596 cites W2999135634 @default.
- W3196329596 cites W3000682311 @default.
- W3196329596 cites W3015218240 @default.
- W3196329596 cites W3030752403 @default.
- W3196329596 cites W3039874977 @default.
- W3196329596 cites W3100049074 @default.
- W3196329596 cites W3107956578 @default.
- W3196329596 cites W3110651891 @default.
- W3196329596 cites W3114939391 @default.
- W3196329596 cites W3117320754 @default.
- W3196329596 cites W3132306544 @default.
- W3196329596 cites W3175942043 @default.
- W3196329596 cites W3196410351 @default.
- W3196329596 cites W2894308381 @default.
- W3196329596 doi "https://doi.org/10.3390/s21175823" @default.
- W3196329596 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8434077" @default.
- W3196329596 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34502718" @default.
- W3196329596 hasPublicationYear "2021" @default.
- W3196329596 type Work @default.
- W3196329596 sameAs 3196329596 @default.
- W3196329596 citedByCount "17" @default.
- W3196329596 countsByYear W31963295962021 @default.
- W3196329596 countsByYear W31963295962022 @default.
- W3196329596 countsByYear W31963295962023 @default.
- W3196329596 crossrefType "journal-article" @default.
- W3196329596 hasAuthorship W3196329596A5009896600 @default.
- W3196329596 hasAuthorship W3196329596A5047501783 @default.
- W3196329596 hasAuthorship W3196329596A5057287842 @default.
- W3196329596 hasAuthorship W3196329596A5061382891 @default.
- W3196329596 hasAuthorship W3196329596A5074435227 @default.
- W3196329596 hasAuthorship W3196329596A5076896351 @default.
- W3196329596 hasBestOaLocation W31963295961 @default.
- W3196329596 hasConcept C102519508 @default.
- W3196329596 hasConcept C111425208 @default.
- W3196329596 hasConcept C127413603 @default.
- W3196329596 hasConcept C134306372 @default.
- W3196329596 hasConcept C153180895 @default.
- W3196329596 hasConcept C154945302 @default.
- W3196329596 hasConcept C159985019 @default.
- W3196329596 hasConcept C160633673 @default.
- W3196329596 hasConcept C160892712 @default.
- W3196329596 hasConcept C185592680 @default.
- W3196329596 hasConcept C186060115 @default.
- W3196329596 hasConcept C192562407 @default.
- W3196329596 hasConcept C26771246 @default.
- W3196329596 hasConcept C31903555 @default.
- W3196329596 hasConcept C31972630 @default.
- W3196329596 hasConcept C33923547 @default.
- W3196329596 hasConcept C41008148 @default.
- W3196329596 hasConcept C42360764 @default.
- W3196329596 hasConcept C43617362 @default.
- W3196329596 hasConcept C50644808 @default.
- W3196329596 hasConcept C60908668 @default.
- W3196329596 hasConcept C81363708 @default.
- W3196329596 hasConcept C86803240 @default.
- W3196329596 hasConcept C98015330 @default.
- W3196329596 hasConceptScore W3196329596C102519508 @default.
- W3196329596 hasConceptScore W3196329596C111425208 @default.
- W3196329596 hasConceptScore W3196329596C127413603 @default.