Matches in SemOpenAlex for { <https://semopenalex.org/work/W3196348523> ?p ?o ?g. }
- W3196348523 endingPage "9711" @default.
- W3196348523 startingPage "9702" @default.
- W3196348523 abstract "The purposes are to analyze the safety and real-time performance of intelligent transportation under big data and solve urban transportation safety problems. The existing problems of complex traffic data collection and single factor analysis are analyzed. Guangzhou target road section and its historical traffic flow are taken as the data source, the big data analytics (BDA) platform is constructed after preprocessing, and then the deep belief network (DBN) is introduced to build the intelligent transportation model based on BDA. Finally, the model is simulated to analyze its performance. The results reveal that the Root Mean Square Error (RMSE), Mean Absolute Error (MAE), and Mean Absolute Percentage Error (MAPE) of the proposed algorithm are 4.42%, 6.21%, and 8.03%, respectively compared to Recurrent Neural Network (RNN), Convolutional Neural Network (CNN), Neuro fuzzy c-means model (FCM), Deep Neural Network (DNN), and neural network (NN). The mean absolute error (MAE) and mean absolute percentage error (MAPE) are 4.42%, 6.21% and 8.03% respectively. The prediction accuracy is significantly better than that of other algorithms. The analysis of Accuracy, Precision, Recall and F1 suggests that the safety prediction accuracy of the proposed algorithm can reach up to 88.57%, which is at least 3.19% higher than that of other algorithms. Meantime, the proposed algorithm can effectively inhibit the spread of congestion, and achieve the effect of timely evacuation for traffic congestion. Regarding the data transmission performance, the delay is less than 40ms and the packet loss rate is less than 0.1, which is significantly better than other model algorithms in real-time performance. Hence, the constructed intelligent transportation algorithm based on BDA has high precision and excellent congestion evacuation performance, which can provide an experimental basis for constructing intelligent and safe transportation in the future." @default.
- W3196348523 created "2021-09-13" @default.
- W3196348523 creator A5039837367 @default.
- W3196348523 creator A5049177850 @default.
- W3196348523 creator A5089407824 @default.
- W3196348523 date "2022-07-01" @default.
- W3196348523 modified "2023-09-23" @default.
- W3196348523 title "Real-Time Intelligent Automatic Transportation Safety Based on Big Data Management" @default.
- W3196348523 cites W2598229768 @default.
- W3196348523 cites W2781159500 @default.
- W3196348523 cites W2783478760 @default.
- W3196348523 cites W2783736514 @default.
- W3196348523 cites W2789452461 @default.
- W3196348523 cites W2793937251 @default.
- W3196348523 cites W2802508687 @default.
- W3196348523 cites W2802594336 @default.
- W3196348523 cites W2818473824 @default.
- W3196348523 cites W2888125957 @default.
- W3196348523 cites W2893106831 @default.
- W3196348523 cites W2894871175 @default.
- W3196348523 cites W2905908970 @default.
- W3196348523 cites W2907834603 @default.
- W3196348523 cites W2910971546 @default.
- W3196348523 cites W2936286953 @default.
- W3196348523 cites W2942806183 @default.
- W3196348523 cites W2943201207 @default.
- W3196348523 cites W2943466984 @default.
- W3196348523 cites W2946933691 @default.
- W3196348523 cites W2954263407 @default.
- W3196348523 cites W2960280836 @default.
- W3196348523 cites W2963103668 @default.
- W3196348523 cites W2972088616 @default.
- W3196348523 cites W2981525116 @default.
- W3196348523 cites W2988422249 @default.
- W3196348523 cites W2993438196 @default.
- W3196348523 cites W2997058333 @default.
- W3196348523 cites W3011364549 @default.
- W3196348523 cites W3030218575 @default.
- W3196348523 cites W3042710080 @default.
- W3196348523 cites W3045591153 @default.
- W3196348523 cites W3091369929 @default.
- W3196348523 cites W3104801653 @default.
- W3196348523 cites W3117350673 @default.
- W3196348523 doi "https://doi.org/10.1109/tits.2021.3106388" @default.
- W3196348523 hasPublicationYear "2022" @default.
- W3196348523 type Work @default.
- W3196348523 sameAs 3196348523 @default.
- W3196348523 citedByCount "4" @default.
- W3196348523 countsByYear W31963485232022 @default.
- W3196348523 countsByYear W31963485232023 @default.
- W3196348523 crossrefType "journal-article" @default.
- W3196348523 hasAuthorship W3196348523A5039837367 @default.
- W3196348523 hasAuthorship W3196348523A5049177850 @default.
- W3196348523 hasAuthorship W3196348523A5089407824 @default.
- W3196348523 hasConcept C10551718 @default.
- W3196348523 hasConcept C105795698 @default.
- W3196348523 hasConcept C108583219 @default.
- W3196348523 hasConcept C11413529 @default.
- W3196348523 hasConcept C124101348 @default.
- W3196348523 hasConcept C127413603 @default.
- W3196348523 hasConcept C139945424 @default.
- W3196348523 hasConcept C147176958 @default.
- W3196348523 hasConcept C150217764 @default.
- W3196348523 hasConcept C154945302 @default.
- W3196348523 hasConcept C207512268 @default.
- W3196348523 hasConcept C33923547 @default.
- W3196348523 hasConcept C38652104 @default.
- W3196348523 hasConcept C41008148 @default.
- W3196348523 hasConcept C47796450 @default.
- W3196348523 hasConcept C50644808 @default.
- W3196348523 hasConcept C81363708 @default.
- W3196348523 hasConceptScore W3196348523C10551718 @default.
- W3196348523 hasConceptScore W3196348523C105795698 @default.
- W3196348523 hasConceptScore W3196348523C108583219 @default.
- W3196348523 hasConceptScore W3196348523C11413529 @default.
- W3196348523 hasConceptScore W3196348523C124101348 @default.
- W3196348523 hasConceptScore W3196348523C127413603 @default.
- W3196348523 hasConceptScore W3196348523C139945424 @default.
- W3196348523 hasConceptScore W3196348523C147176958 @default.
- W3196348523 hasConceptScore W3196348523C150217764 @default.
- W3196348523 hasConceptScore W3196348523C154945302 @default.
- W3196348523 hasConceptScore W3196348523C207512268 @default.
- W3196348523 hasConceptScore W3196348523C33923547 @default.
- W3196348523 hasConceptScore W3196348523C38652104 @default.
- W3196348523 hasConceptScore W3196348523C41008148 @default.
- W3196348523 hasConceptScore W3196348523C47796450 @default.
- W3196348523 hasConceptScore W3196348523C50644808 @default.
- W3196348523 hasConceptScore W3196348523C81363708 @default.
- W3196348523 hasFunder F4320321001 @default.
- W3196348523 hasIssue "7" @default.
- W3196348523 hasLocation W31963485231 @default.
- W3196348523 hasOpenAccess W3196348523 @default.
- W3196348523 hasPrimaryLocation W31963485231 @default.
- W3196348523 hasRelatedWork W2895931553 @default.
- W3196348523 hasRelatedWork W3011539721 @default.
- W3196348523 hasRelatedWork W3128992544 @default.
- W3196348523 hasRelatedWork W3182459386 @default.
- W3196348523 hasRelatedWork W3196348523 @default.