Matches in SemOpenAlex for { <https://semopenalex.org/work/W3196356687> ?p ?o ?g. }
Showing items 1 to 89 of
89
with 100 items per page.
- W3196356687 endingPage "1055" @default.
- W3196356687 startingPage "1048" @default.
- W3196356687 abstract "The preservation of the environment has become a priority and a subject that is receiving more and more attention. This is particularly important in the field of precision agriculture, where pesticide and herbicide use has become more controlled. In this study, we propose to evaluate the ability of the deep learning (DL) and convolutional neural network (CNNs) technology to detect weeds in several types of crops using a perspective and proximity images to enable localized and ultra-localized herbicide spraying in the region of Beni Mellal in Morocco. We studied the detection of weeds through six recent CNN known for their speed and precision, namely, VGGNet (16 and 19), GoogLeNet (Inception V3 and V4) and MobileNet (V1 and V2). The first experiment was performed with the CNNs architectures from scratch and the second experiment with their pre-trained versions. The results showed that Inception V4 achieved the highest precision with a rate of 99.41% and 99.51% on the mixed image sets and for its version from scratch and its pre-trained version respectively, and that MobileNet V2 was the fastest and lightest with its size of 14 MB." @default.
- W3196356687 created "2021-09-13" @default.
- W3196356687 creator A5015690746 @default.
- W3196356687 creator A5035290687 @default.
- W3196356687 creator A5047891307 @default.
- W3196356687 creator A5085829157 @default.
- W3196356687 date "2022-02-01" @default.
- W3196356687 modified "2023-09-28" @default.
- W3196356687 title "Weeds detection efficiency through different convolutional neural networks technology" @default.
- W3196356687 hasPublicationYear "2022" @default.
- W3196356687 type Work @default.
- W3196356687 sameAs 3196356687 @default.
- W3196356687 citedByCount "0" @default.
- W3196356687 crossrefType "journal-article" @default.
- W3196356687 hasAuthorship W3196356687A5015690746 @default.
- W3196356687 hasAuthorship W3196356687A5035290687 @default.
- W3196356687 hasAuthorship W3196356687A5047891307 @default.
- W3196356687 hasAuthorship W3196356687A5085829157 @default.
- W3196356687 hasConcept C108583219 @default.
- W3196356687 hasConcept C111919701 @default.
- W3196356687 hasConcept C115961682 @default.
- W3196356687 hasConcept C118518473 @default.
- W3196356687 hasConcept C119857082 @default.
- W3196356687 hasConcept C120217122 @default.
- W3196356687 hasConcept C12713177 @default.
- W3196356687 hasConcept C127413603 @default.
- W3196356687 hasConcept C153180895 @default.
- W3196356687 hasConcept C154945302 @default.
- W3196356687 hasConcept C18903297 @default.
- W3196356687 hasConcept C202444582 @default.
- W3196356687 hasConcept C2781235140 @default.
- W3196356687 hasConcept C33923547 @default.
- W3196356687 hasConcept C41008148 @default.
- W3196356687 hasConcept C75294576 @default.
- W3196356687 hasConcept C81363708 @default.
- W3196356687 hasConcept C86803240 @default.
- W3196356687 hasConcept C88463610 @default.
- W3196356687 hasConcept C9652623 @default.
- W3196356687 hasConceptScore W3196356687C108583219 @default.
- W3196356687 hasConceptScore W3196356687C111919701 @default.
- W3196356687 hasConceptScore W3196356687C115961682 @default.
- W3196356687 hasConceptScore W3196356687C118518473 @default.
- W3196356687 hasConceptScore W3196356687C119857082 @default.
- W3196356687 hasConceptScore W3196356687C120217122 @default.
- W3196356687 hasConceptScore W3196356687C12713177 @default.
- W3196356687 hasConceptScore W3196356687C127413603 @default.
- W3196356687 hasConceptScore W3196356687C153180895 @default.
- W3196356687 hasConceptScore W3196356687C154945302 @default.
- W3196356687 hasConceptScore W3196356687C18903297 @default.
- W3196356687 hasConceptScore W3196356687C202444582 @default.
- W3196356687 hasConceptScore W3196356687C2781235140 @default.
- W3196356687 hasConceptScore W3196356687C33923547 @default.
- W3196356687 hasConceptScore W3196356687C41008148 @default.
- W3196356687 hasConceptScore W3196356687C75294576 @default.
- W3196356687 hasConceptScore W3196356687C81363708 @default.
- W3196356687 hasConceptScore W3196356687C86803240 @default.
- W3196356687 hasConceptScore W3196356687C88463610 @default.
- W3196356687 hasConceptScore W3196356687C9652623 @default.
- W3196356687 hasIssue "1" @default.
- W3196356687 hasLocation W31963566871 @default.
- W3196356687 hasOpenAccess W3196356687 @default.
- W3196356687 hasPrimaryLocation W31963566871 @default.
- W3196356687 hasRelatedWork W2775664639 @default.
- W3196356687 hasRelatedWork W2792880209 @default.
- W3196356687 hasRelatedWork W2800360725 @default.
- W3196356687 hasRelatedWork W2902625477 @default.
- W3196356687 hasRelatedWork W2913442488 @default.
- W3196356687 hasRelatedWork W2945345024 @default.
- W3196356687 hasRelatedWork W2945461009 @default.
- W3196356687 hasRelatedWork W2948488363 @default.
- W3196356687 hasRelatedWork W2963677722 @default.
- W3196356687 hasRelatedWork W2971706909 @default.
- W3196356687 hasRelatedWork W2989719163 @default.
- W3196356687 hasRelatedWork W2995789611 @default.
- W3196356687 hasRelatedWork W3008890203 @default.
- W3196356687 hasRelatedWork W3019910406 @default.
- W3196356687 hasRelatedWork W3041722663 @default.
- W3196356687 hasRelatedWork W3103566983 @default.
- W3196356687 hasRelatedWork W3115621100 @default.
- W3196356687 hasRelatedWork W3183521862 @default.
- W3196356687 hasRelatedWork W3194071842 @default.
- W3196356687 hasRelatedWork W3214460882 @default.
- W3196356687 hasVolume "12" @default.
- W3196356687 isParatext "false" @default.
- W3196356687 isRetracted "false" @default.
- W3196356687 magId "3196356687" @default.
- W3196356687 workType "article" @default.