Matches in SemOpenAlex for { <https://semopenalex.org/work/W3196367009> ?p ?o ?g. }
Showing items 1 to 77 of
77
with 100 items per page.
- W3196367009 endingPage "8" @default.
- W3196367009 startingPage "5" @default.
- W3196367009 abstract "In the fields of financial risk control and mechanical production, the data sets with abnormal problems are always extremely unbalanced, because the most of abnormal problems occur hardly. Using this unbalanced data set to train the binary classifier, the result is often not ideal. Although there are Ensemble Learning and Grid Search methods to improve the F1 and accuracy of the classifier, in order to simplify the model, it is better to regard this financial risk control problem as an outlier detection problem than a binary classification problem. This paper uses the public data set on Kaggle, and compares the performance of the commonly used binary classification algorithms including Bayesian, Decision Tree, Random Forest, Logistic Regression Classifier, K-Nearest Neighbor (KNN), AdaBoost, One-Class SVM, Isolation Forest and Local Outlier Factor on balanced and unbalanced data sets respectively. According to the experimental results, this paper find that Bayesian is more suitable when the data set is small. Random Forest is more suitable for balanced data. For medium and large data sets with extremely unbalanced data, the effect of using One-Class SVM is better and more stable, and the effect of stable model is more important than that of unstable one." @default.
- W3196367009 created "2021-09-13" @default.
- W3196367009 creator A5007815505 @default.
- W3196367009 creator A5019345945 @default.
- W3196367009 creator A5045138512 @default.
- W3196367009 date "2021-08-27" @default.
- W3196367009 modified "2023-09-23" @default.
- W3196367009 title "Comparison of binary classifier and outlier detection in different equilibrium" @default.
- W3196367009 cites W1788497923 @default.
- W3196367009 doi "https://doi.org/10.23977/jeis.2021.060202" @default.
- W3196367009 hasPublicationYear "2021" @default.
- W3196367009 type Work @default.
- W3196367009 sameAs 3196367009 @default.
- W3196367009 citedByCount "0" @default.
- W3196367009 crossrefType "journal-article" @default.
- W3196367009 hasAuthorship W3196367009A5007815505 @default.
- W3196367009 hasAuthorship W3196367009A5019345945 @default.
- W3196367009 hasAuthorship W3196367009A5045138512 @default.
- W3196367009 hasConcept C119857082 @default.
- W3196367009 hasConcept C12267149 @default.
- W3196367009 hasConcept C124101348 @default.
- W3196367009 hasConcept C141404830 @default.
- W3196367009 hasConcept C153180895 @default.
- W3196367009 hasConcept C154945302 @default.
- W3196367009 hasConcept C169258074 @default.
- W3196367009 hasConcept C41008148 @default.
- W3196367009 hasConcept C52001869 @default.
- W3196367009 hasConcept C66905080 @default.
- W3196367009 hasConcept C739882 @default.
- W3196367009 hasConcept C79337645 @default.
- W3196367009 hasConcept C84525736 @default.
- W3196367009 hasConcept C95623464 @default.
- W3196367009 hasConceptScore W3196367009C119857082 @default.
- W3196367009 hasConceptScore W3196367009C12267149 @default.
- W3196367009 hasConceptScore W3196367009C124101348 @default.
- W3196367009 hasConceptScore W3196367009C141404830 @default.
- W3196367009 hasConceptScore W3196367009C153180895 @default.
- W3196367009 hasConceptScore W3196367009C154945302 @default.
- W3196367009 hasConceptScore W3196367009C169258074 @default.
- W3196367009 hasConceptScore W3196367009C41008148 @default.
- W3196367009 hasConceptScore W3196367009C52001869 @default.
- W3196367009 hasConceptScore W3196367009C66905080 @default.
- W3196367009 hasConceptScore W3196367009C739882 @default.
- W3196367009 hasConceptScore W3196367009C79337645 @default.
- W3196367009 hasConceptScore W3196367009C84525736 @default.
- W3196367009 hasConceptScore W3196367009C95623464 @default.
- W3196367009 hasIssue "2" @default.
- W3196367009 hasLocation W31963670091 @default.
- W3196367009 hasOpenAccess W3196367009 @default.
- W3196367009 hasPrimaryLocation W31963670091 @default.
- W3196367009 hasRelatedWork W125715603 @default.
- W3196367009 hasRelatedWork W1827023954 @default.
- W3196367009 hasRelatedWork W1864224110 @default.
- W3196367009 hasRelatedWork W19710414 @default.
- W3196367009 hasRelatedWork W2135999858 @default.
- W3196367009 hasRelatedWork W2153622690 @default.
- W3196367009 hasRelatedWork W2154706222 @default.
- W3196367009 hasRelatedWork W2158054022 @default.
- W3196367009 hasRelatedWork W2464165438 @default.
- W3196367009 hasRelatedWork W2766402408 @default.
- W3196367009 hasRelatedWork W2785385227 @default.
- W3196367009 hasRelatedWork W2809897032 @default.
- W3196367009 hasRelatedWork W2998259970 @default.
- W3196367009 hasRelatedWork W3006113422 @default.
- W3196367009 hasRelatedWork W3036304242 @default.
- W3196367009 hasRelatedWork W3109126425 @default.
- W3196367009 hasRelatedWork W3128143512 @default.
- W3196367009 hasRelatedWork W3150921503 @default.
- W3196367009 hasRelatedWork W3159874618 @default.
- W3196367009 hasRelatedWork W2833532154 @default.
- W3196367009 hasVolume "6" @default.
- W3196367009 isParatext "false" @default.
- W3196367009 isRetracted "false" @default.
- W3196367009 magId "3196367009" @default.
- W3196367009 workType "article" @default.